
Linux From Scratch

Version 12.0-systemd

Published September 1st, 2023

Created by Gerard Beekmans
Managing Editor: Bruce Dubbs

Editor: Douglas R. Reno
Editor: DJ Lucas

Linux From Scratch: Version 12.0-systemd: Published September 1st, 2023
by Created by Gerard Beekmans, Managing Editor: Bruce Dubbs, Editor: Douglas R. Reno, and Editor: DJ Lucas
Copyright © 1999-2023 Gerard Beekmans

Copyright © 1999-2023, Gerard Beekmans

All rights reserved.

This book is licensed under a Creative Commons License.

Computer instructions may be extracted from the book under the MIT License.

Linux® is a registered trademark of Linus Torvalds.

Linux From Scratch - Version 12.0-systemd

Table of Contents
Preface ... viii

i. Foreword .. viii
ii. Audience ... viii
iii. LFS Target Architectures .. ix
iv. Prerequisites .. x
v. LFS and Standards .. x
vi. Rationale for Packages in the Book ... xi
vii. Typography .. xvii
viii. Structure .. xviii
ix. Errata and Security Advisories ... xix

I. Introduction ... 1
1. Introduction .. 2

1.1. How to Build an LFS System .. 2
1.2. What's new since the last release ... 2
1.3. Changelog ... 4
1.4. Resources .. 7
1.5. Help ... 8

II. Preparing for the Build ... 11
2. Preparing the Host System .. 12

2.1. Introduction ... 12
2.2. Host System Requirements ... 12
2.3. Building LFS in Stages .. 14
2.4. Creating a New Partition .. 15
2.5. Creating a File System on the Partition ... 17
2.6. Setting The $LFS Variable ... 18
2.7. Mounting the New Partition ... 19

3. Packages and Patches .. 20
3.1. Introduction ... 20
3.2. All Packages ... 21
3.3. Needed Patches ... 29

4. Final Preparations .. 31
4.1. Introduction ... 31
4.2. Creating a Limited Directory Layout in the LFS Filesystem .. 31
4.3. Adding the LFS User ... 31
4.4. Setting Up the Environment ... 32
4.5. About SBUs .. 34
4.6. About the Test Suites ... 35

III. Building the LFS Cross Toolchain and Temporary Tools .. 36
Important Preliminary Material ... xxxvii

i. Introduction ... xxxvii
ii. Toolchain Technical Notes ... xxxvii
iii. General Compilation Instructions ... xlii

5. Compiling a Cross-Toolchain .. 43
5.1. Introduction ... 43
5.2. Binutils-2.41 - Pass 1 ... 44

iii

Linux From Scratch - Version 12.0-systemd

5.3. GCC-13.2.0 - Pass 1 ... 46
5.4. Linux-6.4.12 API Headers .. 49
5.5. Glibc-2.38 ... 50
5.6. Libstdc++ from GCC-13.2.0 .. 53

6. Cross Compiling Temporary Tools ... 55
6.1. Introduction ... 55
6.2. M4-1.4.19 .. 56
6.3. Ncurses-6.4 .. 57
6.4. Bash-5.2.15 ... 59
6.5. Coreutils-9.3 .. 60
6.6. Diffutils-3.10 ... 61
6.7. File-5.45 .. 62
6.8. Findutils-4.9.0 ... 63
6.9. Gawk-5.2.2 .. 64
6.10. Grep-3.11 .. 65
6.11. Gzip-1.12 ... 66
6.12. Make-4.4.1 .. 67
6.13. Patch-2.7.6 ... 68
6.14. Sed-4.9 .. 69
6.15. Tar-1.35 ... 70
6.16. Xz-5.4.4 ... 71
6.17. Binutils-2.41 - Pass 2 ... 72
6.18. GCC-13.2.0 - Pass 2 ... 73

7. Entering Chroot and Building Additional Temporary Tools .. 75
7.1. Introduction ... 75
7.2. Changing Ownership .. 75
7.3. Preparing Virtual Kernel File Systems .. 75
7.4. Entering the Chroot Environment .. 76
7.5. Creating Directories .. 77
7.6. Creating Essential Files and Symlinks ... 78
7.7. Gettext-0.22 ... 81
7.8. Bison-3.8.2 .. 82
7.9. Perl-5.38.0 ... 83
7.10. Python-3.11.4 .. 84
7.11. Texinfo-7.0.3 ... 85
7.12. Util-linux-2.39.1 .. 86
7.13. Cleaning up and Saving the Temporary System .. 87

IV. Building the LFS System .. 89
8. Installing Basic System Software .. 90

8.1. Introduction ... 90
8.2. Package Management ... 91
8.3. Man-pages-6.05.01 .. 95
8.4. Iana-Etc-20230810 .. 96
8.5. Glibc-2.38 ... 97
8.6. Zlib-1.2.13 ... 104
8.7. Bzip2-1.0.8 .. 105
8.8. Xz-5.4.4 ... 107

iv

Linux From Scratch - Version 12.0-systemd

8.9. Zstd-1.5.5 .. 109
8.10. File-5.45 .. 110
8.11. Readline-8.2 .. 111
8.12. M4-1.4.19 .. 113
8.13. Bc-6.6.0 ... 114
8.14. Flex-2.6.4 .. 115
8.15. Tcl-8.6.13 .. 116
8.16. Expect-5.45.4 .. 118
8.17. DejaGNU-1.6.3 ... 120
8.18. Binutils-2.41 .. 121
8.19. GMP-6.3.0 ... 124
8.20. MPFR-4.2.0 ... 126
8.21. MPC-1.3.1 ... 127
8.22. Attr-2.5.1 ... 128
8.23. Acl-2.3.1 .. 129
8.24. Libcap-2.69 ... 130
8.25. Libxcrypt-4.4.36 .. 131
8.26. Shadow-4.13 .. 133
8.27. GCC-13.2.0 ... 137
8.28. Pkgconf-2.0.1 .. 142
8.29. Ncurses-6.4 .. 143
8.30. Sed-4.9 .. 146
8.31. Psmisc-23.6 ... 147
8.32. Gettext-0.22 ... 148
8.33. Bison-3.8.2 .. 150
8.34. Grep-3.11 .. 151
8.35. Bash-5.2.15 ... 152
8.36. Libtool-2.4.7 .. 154
8.37. GDBM-1.23 .. 155
8.38. Gperf-3.1 ... 156
8.39. Expat-2.5.0 .. 157
8.40. Inetutils-2.4 ... 158
8.41. Less-643 .. 160
8.42. Perl-5.38.0 ... 161
8.43. XML::Parser-2.46 ... 164
8.44. Intltool-0.51.0 .. 165
8.45. Autoconf-2.71 ... 166
8.46. Automake-1.16.5 ... 168
8.47. OpenSSL-3.1.2 .. 169
8.48. Kmod-30 ... 171
8.49. Libelf from Elfutils-0.189 .. 173
8.50. Libffi-3.4.4 .. 174
8.51. Python-3.11.4 .. 175
8.52. Flit-Core-3.9.0 ... 178
8.53. Wheel-0.41.1 ... 179
8.54. Ninja-1.11.1 ... 180
8.55. Meson-1.2.1 ... 181

v

Linux From Scratch - Version 12.0-systemd

8.56. Coreutils-9.3 .. 182
8.57. Check-0.15.2 ... 187
8.58. Diffutils-3.10 ... 188
8.59. Gawk-5.2.2 .. 189
8.60. Findutils-4.9.0 ... 190
8.61. Groff-1.23.0 ... 191
8.62. GRUB-2.06 ... 194
8.63. Gzip-1.12 ... 196
8.64. IPRoute2-6.4.0 .. 197
8.65. Kbd-2.6.1 ... 199
8.66. Libpipeline-1.5.7 ... 201
8.67. Make-4.4.1 .. 202
8.68. Patch-2.7.6 ... 203
8.69. Tar-1.35 ... 204
8.70. Texinfo-7.0.3 ... 205
8.71. Vim-9.0.1677 .. 207
8.72. MarkupSafe-2.1.3 .. 210
8.73. Jinja2-3.1.2 .. 211
8.74. Systemd-254 .. 212
8.75. D-Bus-1.14.8 ... 217
8.76. Man-DB-2.11.2 ... 219
8.77. Procps-ng-4.0.3 ... 222
8.78. Util-linux-2.39.1 .. 224
8.79. E2fsprogs-1.47.0 ... 229
8.80. About Debugging Symbols .. 232
8.81. Stripping .. 232
8.82. Cleaning Up .. 234

9. System Configuration .. 235
9.1. Introduction ... 235
9.2. General Network Configuration ... 235
9.3. Overview of Device and Module Handling ... 239
9.4. Managing Devices .. 242
9.5. Configuring the system clock ... 242
9.6. Configuring the Linux Console .. 244
9.7. Configuring the System Locale .. 245
9.8. Creating the /etc/inputrc File .. 246
9.9. Creating the /etc/shells File .. 247
9.10. Systemd Usage and Configuration ... 248

10. Making the LFS System Bootable .. 252
10.1. Introduction ... 252
10.2. Creating the /etc/fstab File .. 252
10.3. Linux-6.4.12 .. 254
10.4. Using GRUB to Set Up the Boot Process ... 260

11. The End .. 263
11.1. The End ... 263
11.2. Get Counted .. 263
11.3. Rebooting the System ... 263

vi

Linux From Scratch - Version 12.0-systemd

11.4. Additional Resources .. 264
11.5. Getting Started After LFS .. 265

V. Appendices .. 268
A. Acronyms and Terms ... 269
B. Acknowledgments ... 272
C. Dependencies ... 275
D. LFS Licenses ... 289

D.1. Creative Commons License ... 289
D.2. The MIT License ... 293

Index ... 294

vii

Linux From Scratch - Version 12.0-systemd

Preface
Foreword

My journey to learn and better understand Linux began back in 1998. I had just installed my first Linux distribution
and had quickly become intrigued with the whole concept and philosophy behind Linux.

There are always many ways to accomplish a single task. The same can be said about Linux distributions. A great many
have existed over the years. Some still exist, some have morphed into something else, yet others have been relegated
to our memories. They all do things differently to suit the needs of their target audience. Because so many different
ways to accomplish the same end goal exist, I began to realize I no longer had to be limited by any one implementation.
Prior to discovering Linux, we simply put up with issues in other Operating Systems as you had no choice. It was what
it was, whether you liked it or not. With Linux, the concept of choice began to emerge. If you didn't like something,
you were free, even encouraged, to change it.

I tried a number of distributions and could not decide on any one. They were great systems in their own right. It wasn't
a matter of right and wrong anymore. It had become a matter of personal taste. With all that choice available, it became
apparent that there would not be a single system that would be perfect for me. So I set out to create my own Linux
system that would fully conform to my personal preferences.

To truly make it my own system, I resolved to compile everything from source code instead of using pre-compiled
binary packages. This “perfect” Linux system would have the strengths of various systems without their perceived
weaknesses. At first, the idea was rather daunting. I remained committed to the idea that such a system could be built.

After sorting through issues such as circular dependencies and compile-time errors, I finally built a custom-built Linux
system. It was fully operational and perfectly usable like any of the other Linux systems out there at the time. But it
was my own creation. It was very satisfying to have put together such a system myself. The only thing better would
have been to create each piece of software myself. This was the next best thing.

As I shared my goals and experiences with other members of the Linux community, it became apparent that there was
a sustained interest in these ideas. It quickly became plain that such custom-built Linux systems serve not only to meet
user specific requirements, but also serve as an ideal learning opportunity for programmers and system administrators
to enhance their (existing) Linux skills. Out of this broadened interest, the Linux From Scratch Project was born.

This Linux From Scratch book is the central core around that project. It provides the background and instructions
necessary for you to design and build your own system. While this book provides a template that will result in a correctly
working system, you are free to alter the instructions to suit yourself, which is, in part, an important part of this project.
You remain in control; we just lend a helping hand to get you started on your own journey.

I sincerely hope you will have a great time working on your own Linux From Scratch system and enjoy the numerous
benefits of having a system that is truly your own.

--
Gerard Beekmans
gerard@linuxfromscratch.org

Audience
There are many reasons why you would want to read this book. One of the questions many people raise is, “why go
through all the hassle of manually building a Linux system from scratch when you can just download and install an
existing one?”

viii

Linux From Scratch - Version 12.0-systemd

One important reason for this project's existence is to help you learn how a Linux system works from the inside out.
Building an LFS system helps demonstrate what makes Linux tick, and how things work together and depend on each
other. One of the best things this learning experience can provide is the ability to customize a Linux system to suit
your own unique needs.

Another key benefit of LFS is that it gives you control of the system without relying on someone else's Linux
implementation. With LFS, you are in the driver's seat. You dictate every aspect of your system.

LFS allows you to create very compact Linux systems. With other distributions you are often forced to install a great
many programs you neither use nor understand. These programs waste resources. You may argue that with today's hard
drives and CPUs, wasted resources are no longer a consideration. Sometimes, however, you are still constrained by the
system's size, if nothing else. Think about bootable CDs, USB sticks, and embedded systems. Those are areas where
LFS can be beneficial.

Another advantage of a custom built Linux system is security. By compiling the entire system from source code, you
are empowered to audit everything and apply all the security patches you want. You don't have to wait for somebody
else to compile binary packages that fix a security hole. Unless you examine the patch and implement it yourself, you
have no guarantee that the new binary package was built correctly and adequately fixes the problem.

The goal of Linux From Scratch is to build a complete and usable foundation-level system. If you do not wish to build
your own Linux system from scratch, you may nevertheless benefit from the information in this book.

There are too many good reasons to build your own LFS system to list them all here. In the end, education is by far
the most important reason. As you continue your LFS experience, you will discover the power that information and
knowledge can bring.

LFS Target Architectures
The primary target architectures of LFS are the AMD/Intel x86 (32-bit) and x86_64 (64-bit) CPUs. On the other hand,
the instructions in this book are also known to work, with some modifications, with the Power PC and ARM CPUs.
To build a system that utilizes one of these alternative CPUs, the main prerequisite, in addition to those on the next
page, is an existing Linux system such as an earlier LFS installation, Ubuntu, Red Hat/Fedora, SuSE, or some other
distribution that targets that architecture. (Note that a 32-bit distribution can be installed and used as a host system on
a 64-bit AMD/Intel computer.)

The gain from building on a 64-bit system, as compared to a 32-bit system, is minimal. For example, in a test build of
LFS-9.1 on a Core i7-4790 CPU based system, using 4 cores, the following statistics were measured:

Architecture Build Time Build Size
32-bit 239.9 minutes 3.6 GB
64-bit 233.2 minutes 4.4 GB

As you can see, on the same hardware, the 64-bit build is only 3% faster (and 22% larger) than the 32-bit build. If
you plan to use LFS as a LAMP server, or a firewall, a 32-bit CPU may be good enough. On the other hand, several
packages in BLFS now need more than 4 GB of RAM to be built and/or to run; if you plan to use LFS as a desktop,
the LFS authors recommend building a 64-bit system.

The default 64-bit build that results from LFS is a “pure” 64-bit system. That is, it supports 64-bit executables only.
Building a “multi-lib” system requires compiling many applications twice, once for a 32-bit system and once for a 64-
bit system. This is not directly supported in LFS because it would interfere with the educational objective of providing
the minimal instructions needed for a basic Linux system. Some of the LFS/BLFS editors maintain a multilib fork of
LFS, accessible at https://www.linuxfromscratch.org/~thomas/multilib/index.html. But that's an advanced topic.

ix

https://www.linuxfromscratch.org/~thomas/multilib/index.html

Linux From Scratch - Version 12.0-systemd

Prerequisites
Building an LFS system is not a simple task. It requires a certain level of existing knowledge of Unix system
administration in order to resolve problems and correctly execute the commands listed. In particular, as an absolute
minimum, you should already know how to use the command line (shell) to copy or move files and directories, list
directory and file contents, and change the current directory. It is also expected that you know how to use and install
Linux software.

Because the LFS book assumes at least this basic level of skill, the various LFS support forums are unlikely to provide
you with much assistance in these areas. You will find that your questions regarding such basic knowledge will likely
go unanswered (or you will simply be referred to the LFS essential pre-reading list).

Before building an LFS system, we urge you to read these articles:

• Software-Building-HOWTO https://tldp.org/HOWTO/Software-Building-HOWTO.html

This is a comprehensive guide to building and installing “generic” Unix software packages under Linux. Although
it was written some time ago, it still provides a good summary of the basic techniques used to build and install
software.

• Beginner's Guide to Installing from Source https://moi.vonos.net/linux/beginners-installing-from-source/

This guide provides a good summary of the basic skills and techniques needed to build software from source code.

LFS and Standards
The structure of LFS follows Linux standards as closely as possible. The primary standards are:

• POSIX.1-2008.

• Filesystem Hierarchy Standard (FHS) Version 3.0

• Linux Standard Base (LSB) Version 5.0 (2015)

The LSB has four separate specifications: Core, Desktop, Runtime Languages, and Imaging. Some parts of Core
and Desktop specifications are architecture specific. There are also two trial specifications: Gtk3 and Graphics.
LFS attempts to conform to the LSB specifications for the IA32 (32-bit x86) or AMD64 (x86_64) architectures
discussed in the previous section.

Note

Many people do not agree with these requirements. The main purpose of the LSB is to ensure that
proprietary software can be installed and run on a compliant system. Since LFS is source based, the user
has complete control over what packages are desired; you may choose not to install some packages that
are specified by the LSB.

While it is possible to create a complete system that will pass the LSB certification tests "from scratch", this can't be
done without many additional packages that are beyond the scope of the LFS book. Installation instructions for these
additional packages can be found in BLFS.

Packages supplied by LFS needed to satisfy the LSB Requirements

LSB Core: Bash, Bc, Binutils, Coreutils, Diffutils, File, Findutils, Gawk,
Grep, Gzip, M4, Man-DB, Ncurses, Procps, Psmisc, Sed,
Shadow, Tar, Util-linux, Zlib

x

https://tldp.org/HOWTO/Software-Building-HOWTO.html
https://moi.vonos.net/linux/beginners-installing-from-source/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://refspecs.linuxfoundation.org/lsb.shtml

Linux From Scratch - Version 12.0-systemd

LSB Desktop: None

LSB Runtime Languages: Perl, Python

LSB Imaging: None

LSB Gtk3 and LSB Graphics (Trial Use): None

Packages supplied by BLFS needed to satisfy the LSB Requirements

LSB Core: At, Batch (a part of At), Cpio, Ed, Fcrontab, LSB-Tools, NSPR,
NSS, PAM, Pax, Sendmail (or Postfix or Exim), time

LSB Desktop: Alsa, ATK, Cairo, Desktop-file-utils, Freetype, Fontconfig,
Gdk-pixbuf, Glib2, GTK+2, Icon-naming-utils, Libjpeg-turbo,
Libpng, Libtiff, Libxml2, MesaLib, Pango, Xdg-utils, Xorg

LSB Runtime Languages: Libxml2, Libxslt

LSB Imaging: CUPS, Cups-filters, Ghostscript, SANE

LSB Gtk3 and LSB Graphics (Trial Use): GTK+3

Packages not supplied by LFS or BLFS needed to satisfy the LSB Requirements

LSB Core: None

LSB Desktop: Qt4 (but Qt5 is provided)

LSB Runtime Languages: None

LSB Imaging: None

LSB Gtk3 and LSB Graphics (Trial Use): None

Rationale for Packages in the Book
The goal of LFS is to build a complete and usable foundation-level system—including all the packages needed to
replicate itself—and providing a relatively minimal base from which to customize a more complete system based on the
user's choices. This does not mean that LFS is the smallest system possible. Several important packages are included that
are not, strictly speaking, required. The list below documents the reasons each package in the book has been included.

• Acl

This package contains utilities to administer Access Control Lists, which are used to define fine-grained
discretionary access rights for files and directories.

• Attr

This package contains programs for managing extended attributes on file system objects.

• Autoconf

This package supplies programs for producing shell scripts that can automatically configure source code from a
developer's template. It is often needed to rebuild a package after the build procedure has been updated.

• Automake

This package contains programs for generating Make files from a template. It is often needed to rebuild a package
after the build procedure has been updated.

• Bash

xi

Linux From Scratch - Version 12.0-systemd

This package satisfies an LSB core requirement to provide a Bourne Shell interface to the system. It was chosen
over other shell packages because of its common usage and extensive capabilities.

• Bc

This package provides an arbitrary precision numeric processing language. It satisfies a requirement for building
the Linux kernel.

• Binutils

This package supplies a linker, an assembler, and other tools for handling object files. The programs in this
package are needed to compile most of the packages in an LFS system.

• Bison

This package contains the GNU version of yacc (Yet Another Compiler Compiler) needed to build several of the
LFS programs.

• Bzip2

This package contains programs for compressing and decompressing files. It is required to decompress many LFS
packages.

• Check

This package provides a test harness for other programs.

• Coreutils

This package contains a number of essential programs for viewing and manipulating files and directories. These
programs are needed for command line file management, and are necessary for the installation procedures of every
package in LFS.

• D-Bus

This package contains programs to implement a message bus system, a simple way for applications to talk to one
another.

• DejaGNU

This package supplies a framework for testing other programs.

• Diffutils

This package contains programs that show the differences between files or directories. These programs can be used
to create patches, and are also used in many packages' build procedures.

• E2fsprogs

This package supplies utilities for handling the ext2, ext3 and ext4 file systems. These are the most common and
thoroughly tested file systems that Linux supports.

• Expat

This package yields a relatively small XML parsing library. It is required by the XML::Parser Perl module.

• Expect

This package contains a program for carrying out scripted dialogues with other interactive programs. It is
commonly used for testing other packages.

• File

xii

Linux From Scratch - Version 12.0-systemd

This package contains a utility for determining the type of a given file or files. A few packages need it in their
build scripts.

• Findutils

This package provides programs to find files in a file system. It is used in many packages' build scripts.

• Flex

This package contains a utility for generating programs that recognize patterns in text. It is the GNU version of the
lex (lexical analyzer) program. It is required to build several LFS packages.

• Gawk

This package supplies programs for manipulating text files. It is the GNU version of awk (Aho-Weinberg-
Kernighan). It is used in many other packages' build scripts.

• GCC

This is the Gnu Compiler Collection. It contains the C and C++ compilers as well as several others not built by
LFS.

• GDBM

This package contains the GNU Database Manager library. It is used by one other LFS package, Man-DB.

• Gettext

This package provides utilities and libraries for the internationalization and localization of many packages.

• Glibc

This package contains the main C library. Linux programs will not run without it.

• GMP

This package supplies math libraries that provide useful functions for arbitrary precision arithmetic. It is needed to
build GCC.

• Gperf

This package produces a program that generates a perfect hash function from a set of keys. It is required by
Systemd.

• Grep

This package contains programs for searching through files. These programs are used by most packages' build
scripts.

• Groff

This package contributes programs for processing and formatting text. One important function of these programs is
to format man pages.

• GRUB

This is the Grand Unified Boot Loader. It is the most flexible of several boot loaders available.

• Gzip

This package contains programs for compressing and decompressing files. It is needed to decompress many
packages in LFS.

xiii

Linux From Scratch - Version 12.0-systemd

• Iana-etc

This package provides data for network services and protocols. It is needed to enable proper networking
capabilities.

• Inetutils

This package supplies programs for basic network administration.

• Intltool

This package contributes tools for extracting translatable strings from source files.

• IProute2

This package contains programs for basic and advanced IPv4 and IPv6 networking. It was chosen over the other
common network tools package (net-tools) for its IPv6 capabilities.

• Jinja2

This package is a Python module for text templating. It's required to build Systemd.

• Kbd

This package produces key-table files, keyboard utilities for non-US keyboards, and a number of console fonts.

• Kmod

This package supplies programs needed to administer Linux kernel modules.

• Less

This package contains a very nice text file viewer that allows scrolling up or down when viewing a file. Many
packages use it for paging the output.

• Libcap

This package implements the userspace interfaces to the POSIX 1003.1e capabilities available in Linux kernels.

• Libelf

The elfutils project provides libraries and tools for ELF files and DWARF data. Most utilities in this package
are available in other packages, but the library is needed to build the Linux kernel using the default (and most
efficient) configuration.

• Libffi

This package implements a portable, high level programming interface to various calling conventions. Some
programs may not know at the time of compilation what arguments are to be passed to a function. For instance, an
interpreter may be told at run-time about the number and types of arguments used to call a given function. Libffi
can be used in such programs to provide a bridge from the interpreter program to compiled code.

• Libpipeline

The Libpipeline package supplies a library for manipulating pipelines of subprocesses in a flexible and convenient
way. It is required by the Man-DB package.

• Libtool

This package contains the GNU generic library support script. It wraps the complexity of using shared libraries
into a consistent, portable interface. It is needed by the test suites in other LFS packages.

• Libxcrypt

xiv

Linux From Scratch - Version 12.0-systemd

This package provides the libcrypt library needed by various packages (notably, Shadow) for hashing passwords.
It replaces the obsolete libcrypt implementation in Glibc.

• Linux Kernel

This package is the Operating System. It is the Linux in the GNU/Linux environment.

• M4

This package provides a general text macro processor useful as a build tool for other programs.

• Make

This package contains a program for directing the building of packages. It is required by almost every package in
LFS.

• MarkupSafe

This package is a Python module for processing strings in HTML/XHTML/XML safely. Jinja2 requires this
package.

• Man-DB

This package contains programs for finding and viewing man pages. It was chosen instead of the man package
because of its superior internationalization capabilities. It supplies the man program.

• Man-pages

This package provides the actual contents of the basic Linux man pages.

• Meson

This package provides a software tool for automating the building of software. The main goal of Meson is to
minimize the amount of time that software developers need to spend configuring a build system. It's required to
build Systemd, as well as many BLFS packages.

• MPC

This package supplies arithmetic functions for complex numbers. It is required by GCC.

• MPFR

This package contains functions for multiple precision arithmetic. It is required by GCC.

• Ninja

This package furnishes a small build system with a focus on speed. It is designed to have its input files generated
by a higher-level build system, and to run builds as fast as possible. This package is required by Meson.

• Ncurses

This package contains libraries for terminal-independent handling of character screens. It is often used to provide
cursor control for a menuing system. It is needed by a number of the packages in LFS.

• Openssl

This package provides management tools and libraries relating to cryptography. These supply cryptographic
functions to other packages, including the Linux kernel.

• Patch

This package contains a program for modifying or creating files by applying a patch file typically created by the
diff program. It is needed by the build procedure for several LFS packages.

xv

Linux From Scratch - Version 12.0-systemd

• Perl

This package is an interpreter for the runtime language PERL. It is needed for the installation and test suites of
several LFS packages.

• Pkgconf

This package contains a program which helps to configure compiler and linker flags for development libraries.
The program can be used as a drop-in replacement of pkg-config, which is needed by the building system of many
packages. It's maintained more actively and slightly faster than the original Pkg-config package.

• Procps-NG

This package contains programs for monitoring processes. These programs are useful for system administration,
and are also used by the LFS Bootscripts.

• Psmisc

This package produces programs for displaying information about running processes. These programs are useful
for system administration.

• Python 3

This package provides an interpreted language that has a design philosophy emphasizing code readability.

• Readline

This package is a set of libraries that offer command-line editing and history capabilities. It is used by Bash.

• Sed

This package allows editing of text without opening it in a text editor. It is also needed by many LFS packages'
configure scripts.

• Shadow

This package contains programs for handling passwords securely.

• Systemd

This package provides an init program and several additional boot and system control capabilities as an alternative
to Sysvinit. It is used by many Linux distributions.

• Tar

This package provides archiving and extraction capabilities of virtually all the packages used in LFS.

• Tcl

This package contains the Tool Command Language used in many test suites.

• Texinfo

This package supplies programs for reading, writing, and converting info pages. It is used in the installation
procedures of many LFS packages.

• Util-linux

This package contains miscellaneous utility programs. Among them are utilities for handling file systems,
consoles, partitions, and messages.

• Vim

xvi

Linux From Scratch - Version 12.0-systemd

This package provides an editor. It was chosen because of its compatibility with the classic vi editor and its huge
number of powerful capabilities. An editor is a very personal choice for many users. Any other editor can be
substituted, if you wish.

• Wheel

This package supplies a Python module that is the reference implementation of the Python wheel packaging
standard.

• XML::Parser

This package is a Perl module that interfaces with Expat.

• XZ Utils

This package contains programs for compressing and decompressing files. It provides the highest compression
generally available and is useful for decompressing packages in XZ or LZMA format.

• Zlib

This package contains compression and decompression routines used by some programs.

• Zstd

This package supplies compression and decompression routines used by some programs. It provides high
compression ratios and a very wide range of compression / speed trade-offs.

Typography
To make things easier to follow, there are a few typographical conventions used throughout this book. This section
contains some examples of the typographical format found throughout Linux From Scratch.

./configure --prefix=/usr

This form of text is designed to be typed exactly as seen unless otherwise noted in the surrounding text. It is also used
in the explanation sections to identify which of the commands is being referenced.

In some cases, a logical line is extended to two or more physical lines with a backslash at the end of the line.

CC="gcc -B/usr/bin/" ../binutils-2.18/configure \
 --prefix=/tools --disable-nls --disable-werror

Note that the backslash must be followed by an immediate return. Other whitespace characters like spaces or tab
characters will create incorrect results.

install-info: unknown option '--dir-file=/mnt/lfs/usr/info/dir'

This form of text (fixed-width text) shows screen output, usually as the result of commands issued. This format is also
used to show filenames, such as /etc/ld.so.conf.

Note

Please configure your browser to display fixed-width text with a good monospace" font-size="9ptd font, with
which you can distinguish the glyphs of Il1 or O0 clearly.

Emphasis

This form of text is used for several purposes in the book. Its main purpose is to emphasize important points or items.

https://www.linuxfromscratch.org/

xvii

https://www.linuxfromscratch.org/

Linux From Scratch - Version 12.0-systemd

This format is used for hyperlinks both within the LFS community and to external pages. It includes HOWTOs,
download locations, and websites.

cat > $LFS/etc/group << "EOF"
root:x:0:
bin:x:1:
......
EOF

This format is used when creating configuration files. The first command tells the system to create the file $LFS/etc/
group from whatever is typed on the following lines until the sequence End Of File (EOF) is encountered. Therefore,
this entire section is generally typed as seen.

<REPLACED TEXT>

This format is used to encapsulate text that is not to be typed as seen or for copy-and-paste operations.

[OPTIONAL TEXT]

This format is used to encapsulate text that is optional.

passwd(5)

This format is used to refer to a specific manual (man) page. The number inside parentheses indicates a specific section
inside the manuals. For example, passwd has two man pages. Per LFS installation instructions, those two man pages
will be located at /usr/share/man/man1/passwd.1 and /usr/share/man/man5/passwd.5. When the book uses passwd(5)
it is specifically referring to /usr/share/man/man5/passwd.5. man passwd will print the first man page it finds that
matches “passwd”, which will be /usr/share/man/man1/passwd.1. For this example, you will need to run man 5 passwd
in order to read the page being specified. Note that most man pages do not have duplicate page names in different
sections. Therefore, man <program name> is generally sufficient.

Structure
This book is divided into the following parts.

Part I - Introduction
Part I explains a few important notes on how to proceed with the LFS installation. This section also provides meta-
information about the book.

Part II - Preparing for the Build
Part II describes how to prepare for the building process—making a partition, downloading the packages, and compiling
temporary tools.

Part III - Building the LFS Cross Toolchain and Temporary Tools
Part III provides instructions for building the tools needed for constructing the final LFS system.

Part IV - Building the LFS System
Part IV guides the reader through the building of the LFS system—compiling and installing all the packages one by
one, setting up the boot scripts, and installing the kernel. The resulting Linux system is the foundation on which other
software can be built to expand the system as desired. At the end of this book, there is an easy to use reference listing
all of the programs, libraries, and important files that have been installed.

xviii

Linux From Scratch - Version 12.0-systemd

Part V - Appendices
Part V provides information about the book itself including acronyms and terms, acknowledgments, package
dependencies, a listing of LFS boot scripts, licenses for the distribution of the book, and a comprehensive index of
packages, programs, libraries, and scripts.

Errata and Security Advisories
The software used to create an LFS system is constantly being updated and enhanced. Security warnings and bug fixes
may become available after the LFS book has been released. To check whether the package versions or instructions in
this release of LFS need any modifications—to repair security vulnerabilities or to fix other bugs—please visit https://
www.linuxfromscratch.org/lfs/errata/12.0-systemd/ before proceeding with your build. You should note any changes
shown and apply them to the relevant sections of the book as you build the LFS system.

In addition, the Linux From Scratch editors maintain a list of security vulnerabilities discovered after a book has been
released. To read the list, please visit https://www.linuxfromscratch.org/lfs/advisories/ before proceeding with your
build. You should apply the changes suggested by the advisories to the relevant sections of the book as you build the
LFS system. And, if you will use the LFS system as a real desktop or server system, you should continue to consult the
advisories and fix any security vulnerabilities, even when the LFS system has been completely constructed.

xix

https://www.linuxfromscratch.org/lfs/errata/12.0-systemd/
https://www.linuxfromscratch.org/lfs/errata/12.0-systemd/
https://www.linuxfromscratch.org/lfs/advisories/

Linux From Scratch - Version 12.0-systemd

Part I. Introduction

Linux From Scratch - Version 12.0-systemd

Chapter 1. Introduction

1.1. How to Build an LFS System
The LFS system will be built by using an already installed Linux distribution (such as Debian, OpenMandriva, Fedora,
or openSUSE). This existing Linux system (the host) will be used as a starting point to provide necessary programs,
including a compiler, linker, and shell, to build the new system. Select the “development” option during the distribution
installation to include these tools.

Note
There are many ways to install a Linux distribution and the defaults are usually not optimal for building an
LFS system. For suggestions on setting up a commercial distribution see: https://www.linuxfromscratch.org/
hints/downloads/files/partitioning-for-lfs.txt.

As an alternative to installing a separate distribution on your machine, you may wish to use a LiveCD from a commercial
distribution.

Chapter 2 of this book describes how to create a new Linux native partition and file system, where the new LFS
system will be compiled and installed. Chapter 3 explains which packages and patches must be downloaded to build
an LFS system, and how to store them on the new file system. Chapter 4 discusses the setup of an appropriate working
environment. Please read Chapter 4 carefully as it explains several important issues you should be aware of before you
begin to work your way through Chapter 5 and beyond.

Chapter 5 explains the installation of the initial tool chain, (binutils, gcc, and glibc) using cross-compilation techniques
to isolate the new tools from the host system.

Chapter 6 shows you how to cross-compile basic utilities using the just built cross-toolchain.

Chapter 7 then enters a "chroot" environment, where we use the new tools to build all the rest of the tools needed to
create the LFS system.

This effort to isolate the new system from the host distribution may seem excessive. A full technical explanation as to
why this is done is provided in Toolchain Technical Notes.

In Chapter 8 the full-blown LFS system is built. Another advantage provided by the chroot environment is that it allows
you to continue using the host system while LFS is being built. While waiting for package compilations to complete,
you can continue using your computer as usual.

To finish the installation, the basic system configuration is set up in Chapter 9, and the kernel and boot loader are
created in Chapter 10. Chapter 11 contains information on continuing the LFS experience beyond this book. After the
steps in this chapter have been implemented, the computer is ready to boot into the new LFS system.

This is the process in a nutshell. Detailed information on each step is presented in the following chapters. Items that
seem complicated now will be clarified, and everything will fall into place as you commence your LFS adventure.

1.2. What's new since the last release
Here is a list of the packages updated since the previous release of LFS.

Upgraded to:

•

• Bc 6.6.0

• Binutils-2.41

2

https://www.linuxfromscratch.org/hints/downloads/files/partitioning-for-lfs.txt
https://www.linuxfromscratch.org/hints/downloads/files/partitioning-for-lfs.txt

Linux From Scratch - Version 12.0-systemd

• Coreutils-9.3

• D-Bus-1.14.8

• Diffutils-3.10

• File-5.45

• Flit-core-3.9.0

• Gawk-5.2.2

• GCC-13.2.0

• Gettext-0.22

• Glibc-2.38

• GMP-6.3.0

• Grep-3.11

• Groff-1.23.0

• IANA-Etc-20230810

• IPRoute2-6.4.0

• Kbd-2.6.1

• Less-643

• Libcap-2.69

• Libelf-0.189 (from elfutils)

• Linux-6.4.12

• Make-4.4.1

• Man-pages-6.05.01

• MarkupSafe-2.1.3

• Meson-1.2.1

• Openssl-3.1.2

• Pkgconf-2.0.1

• Perl-5.38.0

• Procps-ng-4.0.3

• Python-3.11.4

• Systemd-254

• Tar-1.35

• Texinfo-7.0.3

• Tzdata-2023c

• Util-Linux-2.39.1

• Vim-9.0.1677

• wheel-0.41.1

• XZ-Utils-5.4.4

• Zstd-1.5.5

Added:

•

• Libxcrypt-4.4.36

3

Linux From Scratch - Version 12.0-systemd

• Pkgconf-2.0.1

• Flit-core-3.9.0

• glibc-2.38-memalign_fix-1.patch

Removed:

•

• Pkg-config-0.29.2

• systemd-252-security_fix-1.patch

1.3. Changelog
This is version 12.0-systemd of the Linux From Scratch book, dated September 1st, 2023. If this book is more than six
months old, a newer and better version is probably already available. To find out, please check one of the mirrors via
https://www.linuxfromscratch.org/mirrors.html.

Below is a list of changes made since the previous release of the book.

Changelog Entries:

• 2023-09-01

• [bdubbs] - LFS-12.0 released.

• 2023-08-18

• [bdubbs] - Update to linux-6.4.12. Fixes #5320.

• 2023-08-18

• [bdubbs] - Update to udev-lfs-20230818.

• 2023-08-15

• [bdubbs] - Add a patch to fix a performance regression in glibc's posix_memalign() function. Fixes #5315.

• [bdubbs] - Update to less-643. Fixes #5317.

• [bdubbs] - Update to meson-1.2.1. Fixes #5314.

• [bdubbs] - Update to linux-6.4.10. Fixes #5313.

• [bdubbs] - Update to iana-etc-20230810. Addresses #5006.

• [rahul] - Update to pkgconf-2.0.1. Fixes #5316.

• 2023-08-07

• [bdubbs] - Update to xz-5.4.4. Fixes #5307.

• [bdubbs] - Update to wheel-0.41.1 (Python Module). Fixes #5311.

• [bdubbs] - Update to man-pages-6.05.01. Fixes #5306.

• [bdubbs] - Update to linux-6.4.8. Fixes #5309.

• [bdubbs] - Update to iana-etc-20230804. Addresses #5006.

• [rahul] - Update to pkgconf-2.0.0. Fixes #5310.

• 2023-08-01

• [bdubbs] - Update to vim-9.0.1677. Addresses #4500.

• [bdubbs] - Update to openssl-3.1.2. Fixes #5305.

• [bdubbs] - Update to man-pages-6.05. Fixes #5303.

4

https://www.linuxfromscratch.org/mirrors.html
https://wiki.linuxfromscratch.org/lfs/ticket/5320
https://wiki.linuxfromscratch.org/lfs/ticket/5315
https://wiki.linuxfromscratch.org/lfs/ticket/5317
https://wiki.linuxfromscratch.org/lfs/ticket/5314
https://wiki.linuxfromscratch.org/lfs/ticket/5313
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/5316
https://wiki.linuxfromscratch.org/lfs/ticket/5307
https://wiki.linuxfromscratch.org/lfs/ticket/5311
https://wiki.linuxfromscratch.org/lfs/ticket/5306
https://wiki.linuxfromscratch.org/lfs/ticket/5309
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/5310
https://wiki.linuxfromscratch.org/lfs/ticket/4500
https://wiki.linuxfromscratch.org/lfs/ticket/5305
https://wiki.linuxfromscratch.org/lfs/ticket/5303

Linux From Scratch - Version 12.0-systemd

• [bdubbs] - Update to binutils-2.41. Fixes #5300.

• [bdubbs] - Update to gmp-6.3.0. Fixes #5301.

• [bdubbs] - Update to glibc-2.38. Fixes #5302.

• 2023-07-28

• [bdubbs] - Update udev-lfs tarball to remove obsolete cdrom rules and references to ISDN devices. Fixes #5291.

• [bdubbs] - Update to wheel-0.41.0 (Python Module). Fixes #5290.

• [bdubbs] - Update to tar-1.35. Fixes #5287.

• [bdubbs] - Update to systemd-254. Fixes #5293.

• [bdubbs] - Update to meson-1.2.0. Fixes #5286.

• [bdubbs] - Update to linux-6.4.7. Fixes #5288.

• [bdubbs] - Update to gcc-13.2.0. Fixes #5292.

• [bdubbs] - Update to file-5.45. Fixes #5294.

• 2023-07-15

• [bdubbs] - Update to iana-etc-20230629. Addresses #5006.

• [bdubbs] - Update to linux-6.4.3. Fixes #5284.

• [bdubbs] - Update to libxcrypt-4.4.36. Fixes #5283.

• [bdubbs] - Update to groff-1.23.0. Fixes #5282.

• [bdubbs] - Update to perl-5.38.0. Fixes #5281.

• 2023-07-02

• [xry111] - Add libxcrypt-4.4.35. Fixes #5280.

• [xry111] - Update to iproute2-6.4.0. Fixes #5277.

• [xry111] - Update to linux-6.4.1. Fixes #5276.

• 2023-07-01

• [bdubbs] - Update to iana-etc-20230615. Addresses #5006.

• [bdubbs] - Update to vim-9.0.1671. Addresses #4500.

• [bdubbs] - Update to util-linux-2.39.1. Addresses #5278.

• [bdubbs] - Update to linux-6.3.10. Addresses #5276.

• [rahul] - Update to kbd-2.6.1. Fixes #5279.

• [bdubbs] - Update to gettext-0.22. Fixes #5275.

• 2023-06-17

• [xry111] - Update to linux-6.3.8. Fixes #5272.

• [xry111] - Update to kbd-2.6.0. Fixes #5273.

• [rahul] - Changed from pkg-config to pkgconf-1.9.5. Fixes #5274.

• 2023-06-09

• [bdubbs] - Update to dbus-1.14.8. Fixes #5271.

• [bdubbs] - Update to linux-6.3.6. Fixes #5269.

5

https://wiki.linuxfromscratch.org/lfs/ticket/5300
https://wiki.linuxfromscratch.org/lfs/ticket/5301
https://wiki.linuxfromscratch.org/lfs/ticket/5302
https://wiki.linuxfromscratch.org/lfs/ticket/5291
https://wiki.linuxfromscratch.org/lfs/ticket/5290
https://wiki.linuxfromscratch.org/lfs/ticket/5287
https://wiki.linuxfromscratch.org/lfs/ticket/5293
https://wiki.linuxfromscratch.org/lfs/ticket/5286
https://wiki.linuxfromscratch.org/lfs/ticket/5288
https://wiki.linuxfromscratch.org/lfs/ticket/5292
https://wiki.linuxfromscratch.org/lfs/ticket/5294
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/5284
https://wiki.linuxfromscratch.org/lfs/ticket/5283
https://wiki.linuxfromscratch.org/lfs/ticket/5282
https://wiki.linuxfromscratch.org/lfs/ticket/5281
https://wiki.linuxfromscratch.org/lfs/ticket/5280
https://wiki.linuxfromscratch.org/lfs/ticket/5277
https://wiki.linuxfromscratch.org/lfs/ticket/5276
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/4500
https://wiki.linuxfromscratch.org/lfs/ticket/5278
https://wiki.linuxfromscratch.org/lfs/ticket/5276
https://wiki.linuxfromscratch.org/lfs/ticket/5279
https://wiki.linuxfromscratch.org/lfs/ticket/5275
https://wiki.linuxfromscratch.org/lfs/ticket/5272
https://wiki.linuxfromscratch.org/lfs/ticket/5273
https://wiki.linuxfromscratch.org/lfs/ticket/5274
https://wiki.linuxfromscratch.org/lfs/ticket/5271
https://wiki.linuxfromscratch.org/lfs/ticket/5269

Linux From Scratch - Version 12.0-systemd

• [bdubbs] - Update to Python-3.11.4. Fixes #5271.

• 2023-06-03

• [bdubbs] - Update to iana-etc-20230524. Addresses #5006.

• [bdubbs] - Update to MarkupSafe-2.1.3 (Python Module). Fixes #5268.

• [bdubbs] - Update to linux-6.3.5. Fixes #5264.

• [bdubbs] - Update to openssl-3.1.1. Fixes #5267.

• [bdubbs] - Update to meson-1.1.1. Fixes #5266.

• [bdubbs] - Update to diffutils-3.10. Fixes #5262.

• [bdubbs] - Update to bc-6.6.0. Fixes #5263.

• 2023-05-18

• [bdubbs] - Update to util-linux-2.39. Fixes #5259.

• [bdubbs] - Update to linux-6.3.3. Fixes #5261.

• [bdubbs] - Update to libcap-2.69. Fixes #5258.

• [bdubbs] - Update to grep-3.11. Fixes #5256.

• [bdubbs] - Update to flit_core-3.9.0. Fixes #5257.

• 2023-05-13

• [xry111] - Update to less-633. Fixes #5251.

• [xry111] - Update to linux-6.3.2. Fixes #5255.

• [xry111] - Update to xz-5.4.3. Fixes #5252.

• [xry111] - Update to gawk-5.2.2. Fixes #5253.

• [xry111] - Fix systemd runtime issue exploited by GCC 13. Fixes #5254.

• 2023-05-01

• [bdubbs] - Update to vim-9.0.1503. Addresses #4500.

• [bdubbs] - Update to iana-etc-20230418. Addresses #5006.

• [bdubbs] - Update to iproute2-6.3.0. Fixes #5248.

• [bdubbs] - Update to gcc-13.1.0. Fixes #5247.

• [bdubbs] - Update to perl-5.36.1. Fixes #5246.

• [bdubbs] - Update to linux-6.3.1. Fixes #5245.

• [bdubbs] - Update to coreutils-9.3. Fixes #5244.

• 2023-04-15

• [bdubbs] - Update to vim-9.0.1452. Addresses #4500.

• [bdubbs] - Update to iana-etc-20230405. Addresses #5006.

• [bdubbs] - Update to zstd-1.5.5. Fixes #5239.

• [bdubbs] - Update to Python-3.11.3. Fixes #5240.

• [bdubbs] - Update to meson-1.1.0. Fixes #5242.

• [bdubbs] - Update to man-pages-6.04. Fixes #5238.

6

https://wiki.linuxfromscratch.org/lfs/ticket/5271
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/5268
https://wiki.linuxfromscratch.org/lfs/ticket/5264
https://wiki.linuxfromscratch.org/lfs/ticket/5267
https://wiki.linuxfromscratch.org/lfs/ticket/5266
https://wiki.linuxfromscratch.org/lfs/ticket/5262
https://wiki.linuxfromscratch.org/lfs/ticket/5263
https://wiki.linuxfromscratch.org/lfs/ticket/5259
https://wiki.linuxfromscratch.org/lfs/ticket/5261
https://wiki.linuxfromscratch.org/lfs/ticket/5258
https://wiki.linuxfromscratch.org/lfs/ticket/5256
https://wiki.linuxfromscratch.org/lfs/ticket/5257
https://wiki.linuxfromscratch.org/lfs/ticket/5251
https://wiki.linuxfromscratch.org/lfs/ticket/5255
https://wiki.linuxfromscratch.org/lfs/ticket/5252
https://wiki.linuxfromscratch.org/lfs/ticket/5253
https://wiki.linuxfromscratch.org/lfs/ticket/5254
https://wiki.linuxfromscratch.org/lfs/ticket/4500
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/5248
https://wiki.linuxfromscratch.org/lfs/ticket/5247
https://wiki.linuxfromscratch.org/lfs/ticket/5246
https://wiki.linuxfromscratch.org/lfs/ticket/5245
https://wiki.linuxfromscratch.org/lfs/ticket/5244
https://wiki.linuxfromscratch.org/lfs/ticket/4500
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/5239
https://wiki.linuxfromscratch.org/lfs/ticket/5240
https://wiki.linuxfromscratch.org/lfs/ticket/5242
https://wiki.linuxfromscratch.org/lfs/ticket/5238

Linux From Scratch - Version 12.0-systemd

• [bdubbs] - Update to linux-6.2.11. Fixes #5241.

• 2023-03-31

• [xry111] - Update to linux-6.2.9 (security fix). Fixes #5230.

• [xry111] - Update to grep-3.10. Fixes #5234.

• [xry111] - Update to wheel-0.40.0. Fixes #5229.

• [xry111] - Update to bc-6.5.0. Fixes #5228.

• [xry111] - Update to texinfo-7.0.3. Fixes #5235.

• [xry111] - Update to coreutils-9.2. Fixes #5232.

• [xry111] - Update to libcap-2.68. Fixes #5236.

• [xry111] - Update to tzdata-2023c. Fixes #5237.

• [xry111] - Update to xz-5.4.2. Fixes #5233.

• [xry111] - Update to openssl-3.1.0. Fixes #5227.

• [xry111] - Add flit-core-3.8.0.

• 2023-03-15

• [bdubbs] - Update to bc-6.4.0. Fixes #5217.

• [bdubbs] - Update to grep-3.9. Fixes #5225.

• [bdubbs] - Update to linux-6.2.6. Fixes #5226.

• [bdubbs] - Update to iana-etc-20230306. Addresses #5006.

• 2023-03-04

• [xry111] - Update to systemd-253. Fixes #5206.

• [xry111] - Update to bc-6.3.1. Fixes #5217.

• [xry111] - Update to linux-6.2.2 (security fixes). Fixes #5218.

• [xry111] - Update to procps-ng-4.0.3. Fixes #5220.

• [xry111] - Update to iproute2-6.2.0. Fixes #5221.

• [xry111] - Update to meson-1.0.1. Fixes #5222.

• [xry111] - Update to make-4.4.1. Fixes #5223.

• [xry111] - Update to libelf-0.189. Fixes #5224.

• [bdubbs] - Change to a better host requirements script in Chapter 2.

• 2023-03-01

• [bdubbs] - LFS-11.3 released.

1.4. Resources

1.4.1. FAQ
If during the building of the LFS system you encounter any errors, have any questions, or think there is a typo in the
book, please start by consulting the list of Frequently Asked Questions (FAQ), located at https://www.linuxfromscratch.
org/faq/.

7

https://wiki.linuxfromscratch.org/lfs/ticket/5241
https://wiki.linuxfromscratch.org/lfs/ticket/5230
https://wiki.linuxfromscratch.org/lfs/ticket/5234
https://wiki.linuxfromscratch.org/lfs/ticket/5229
https://wiki.linuxfromscratch.org/lfs/ticket/5228
https://wiki.linuxfromscratch.org/lfs/ticket/5235
https://wiki.linuxfromscratch.org/lfs/ticket/5232
https://wiki.linuxfromscratch.org/lfs/ticket/5236
https://wiki.linuxfromscratch.org/lfs/ticket/5237
https://wiki.linuxfromscratch.org/lfs/ticket/5233
https://wiki.linuxfromscratch.org/lfs/ticket/5227
https://wiki.linuxfromscratch.org/lfs/ticket/5217
https://wiki.linuxfromscratch.org/lfs/ticket/5225
https://wiki.linuxfromscratch.org/lfs/ticket/5226
https://wiki.linuxfromscratch.org/lfs/ticket/5006
https://wiki.linuxfromscratch.org/lfs/ticket/5206
https://wiki.linuxfromscratch.org/lfs/ticket/5217
https://wiki.linuxfromscratch.org/lfs/ticket/5218
https://wiki.linuxfromscratch.org/lfs/ticket/5220
https://wiki.linuxfromscratch.org/lfs/ticket/5221
https://wiki.linuxfromscratch.org/lfs/ticket/5222
https://wiki.linuxfromscratch.org/lfs/ticket/5223
https://wiki.linuxfromscratch.org/lfs/ticket/5224
https://www.linuxfromscratch.org/faq/
https://www.linuxfromscratch.org/faq/

Linux From Scratch - Version 12.0-systemd

1.4.2. Mailing Lists

The linuxfromscratch.org server hosts a number of mailing lists used for the development of the LFS project. These
lists include the main development and support lists, among others. If you cannot find an answer to your problem on
the FAQ page, the next step would be to search the mailing lists at https://www.linuxfromscratch.org/search.html.

For information on the different lists, how to subscribe, archive locations, and additional information, visit https://www.
linuxfromscratch.org/mail.html.

1.4.3. IRC

Several members of the LFS community offer assistance via Internet Relay Chat (IRC). Before using this support,
please make sure your question is not already answered in the LFS FAQ or the mailing list archives. You can find the
IRC network at irc.libera.chat. The support channel is named #lfs-support.

1.4.4. Mirror Sites

The LFS project has a number of world-wide mirrors to make accessing the website and downloading the required
packages more convenient. Please visit the LFS website at https://www.linuxfromscratch.org/mirrors.html for a list of
current mirrors.

1.4.5. Contact Information

Please direct all your questions and comments to one of the LFS mailing lists (see above).

1.5. Help

Note

In case you've hit an issue building one package with the LFS instruction, we strongly discourage posting
the issue directly onto the upstream support channel before discussing via a LFS support channel listed in
Section 1.4, “Resources”. Doing so is often quite inefficient because the upstream maintainers are rarely
familiar with LFS building procedure. Even if you've really hit an upstream issue, the LFS community can
still help to isolate the information wanted by the upstream maintainers and make a proper report.

If you must ask a question directly via an upstream support channel, you shall at least note that many upstream
projects have the support channels separated from the bug tracker. The “bug” reports for asking questions are
considered invalid and may annoy upstream developers for these projects.

If an issue or a question is encountered while working through this book, please check the FAQ page at https://www.
linuxfromscratch.org/faq/#generalfaq. Questions are often already answered there. If your question is not answered on
that page, try to find the source of the problem. The following hint will give you some guidance for troubleshooting:
https://www.linuxfromscratch.org/hints/downloads/files/errors.txt.

If you cannot find your problem listed in the FAQ, search the mailing lists at https://www.linuxfromscratch.org/search.
html.

We also have a wonderful LFS community that is willing to offer assistance through the mailing lists and IRC (see
the Section 1.4, “Resources” section of this book). However, we get several support questions every day, and many of
them could have been easily answered by going to the FAQ or by searching the mailing lists first. So, for us to offer the

8

https://www.linuxfromscratch.org/search.html
https://www.linuxfromscratch.org/mail.html
https://www.linuxfromscratch.org/mail.html
https://www.linuxfromscratch.org/mirrors.html
https://www.linuxfromscratch.org/faq/#generalfaq
https://www.linuxfromscratch.org/faq/#generalfaq
https://www.linuxfromscratch.org/hints/downloads/files/errors.txt
https://www.linuxfromscratch.org/search.html
https://www.linuxfromscratch.org/search.html

Linux From Scratch - Version 12.0-systemd

best assistance possible, you should first do some research on your own. That allows us to focus on the more unusual
support needs. If your searches do not produce a solution, please include all the relevant information (mentioned below)
in your request for help.

1.5.1. Things to Mention
Apart from a brief explanation of the problem being experienced, any request for help should include these essential
things:

• The version of the book being used (in this case 12.0-systemd)

• The host distribution and version being used to create LFS

• The output from the Host System Requirements script

• The package or section the problem was encountered in

• The exact error message, or a clear description of the problem

• Note whether you have deviated from the book at all

Note

Deviating from this book does not mean that we will not help you. After all, LFS is about personal preference.
Being up-front about any changes to the established procedure helps us evaluate and determine possible causes
of your problem.

1.5.2. Configure Script Problems
If something goes wrong while running the configure script, review the config.log file. This file may contain errors
encountered during configure which were not printed to the screen. Include the relevant lines if you need to ask for help.

1.5.3. Compilation Problems
Both the screen output and the contents of various files are useful in determining the cause of compilation problems.
The screen output from the configure script and the make run can be helpful. It is not necessary to include the entire
output, but do include all of the relevant information. Here is an example of the type of information to include from
the make screen output.

gcc -DALIASPATH=\"/mnt/lfs/usr/share/locale:.\"
-DLOCALEDIR=\"/mnt/lfs/usr/share/locale\"
-DLIBDIR=\"/mnt/lfs/usr/lib\"
-DINCLUDEDIR=\"/mnt/lfs/usr/include\" -DHAVE_CONFIG_H -I. -I.
-g -O2 -c getopt1.c
gcc -g -O2 -static -o make ar.o arscan.o commands.o dir.o
expand.o file.o function.o getopt.o implicit.o job.o main.o
misc.o read.o remake.o rule.o signame.o variable.o vpath.o
default.o remote-stub.o version.o opt1.o
-lutil job.o: In function `load_too_high':
/lfs/tmp/make-3.79.1/job.c:1565: undefined reference
to `getloadavg'
collect2: ld returned 1 exit status
make[2]: *** [make] Error 1
make[2]: Leaving directory `/lfs/tmp/make-3.79.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/lfs/tmp/make-3.79.1'
make: *** [all-recursive-am] Error 2

9

Linux From Scratch - Version 12.0-systemd

In this case, many people would just include the bottom section:

make [2]: *** [make] Error 1

This is not enough information to diagnose the problem, because it only notes that something went wrong, not what
went wrong. The entire section, as in the example above, is what should be saved because it includes the command that
was executed and all the associated error messages.

An excellent article about asking for help on the Internet is available online at http://catb.org/~esr/faqs/smart-questions.
html. Read this document, and follow the hints. Doing so will increase the likelihood of getting the help you need.

10

http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html

Linux From Scratch - Version 12.0-systemd

Part II. Preparing for the Build

Linux From Scratch - Version 12.0-systemd

Chapter 2. Preparing the Host System

2.1. Introduction
In this chapter, the host tools needed for building LFS are checked and, if necessary, installed. Then a partition which
will host the LFS system is prepared. We will create the partition itself, create a file system on it, and mount it.

2.2. Host System Requirements

2.2.1. Hardware
The LFS editors recommend that the system CPU have at least four cores and that the system have at least 8 GB of
memory. Older systems that do not meet these requirements will still work, but the time to build packages will be
significantly longer than documented.

2.2.2. Software
Your host system should have the following software with the minimum versions indicated. This should not be an
issue for most modern Linux distributions. Also note that many distributions will place software headers into separate
packages, often in the form of “<package-name>-devel” or “<package-name>-dev”. Be sure to install those if your
distribution provides them.

Earlier versions of the listed software packages may work, but have not been tested.

• Bash-3.2 (/bin/sh should be a symbolic or hard link to bash)
• Binutils-2.13.1 (Versions greater than 2.41 are not recommended as they have not been tested)
• Bison-2.7 (/usr/bin/yacc should be a link to bison or a small script that executes bison)
• Coreutils-7.0
• Diffutils-2.8.1
• Findutils-4.2.31
• Gawk-4.0.1 (/usr/bin/awk should be a link to gawk)
• GCC-5.1 including the C++ compiler, g++ (Versions greater than 13.2.0 are not recommended as they have not

been tested). C and C++ standard libraries (with headers) must also be present so the C++ compiler can build
hosted programs

• Grep-2.5.1a
• Gzip-1.3.12
• Linux Kernel-4.14

The reason for the kernel version requirement is that we specify that version when building glibc in Chapter 5
and Chapter 8, so the workarounds for older kernels are not enabled and the compiled glibc is slightly faster and
smaller. As at June 2023, 4.14 is the oldest kernel release still supported by the kernel developers.

If the host kernel is earlier than 4.14 you will need to replace the kernel with a more up-to-date version. There
are two ways you can go about this. First, see if your Linux vendor provides a 4.14 or later kernel package. If so,
you may wish to install it. If your vendor doesn't offer an acceptable kernel package, or you would prefer not to
install it, you can compile a kernel yourself. Instructions for compiling the kernel and configuring the boot loader
(assuming the host uses GRUB) are located in Chapter 10.

We require the host kernel to support UNIX 98 pseudo terminal (PTY). It should be enabled on all desktop or
server distros shipping Linux 4.14 or a newer kernel. If you are building a custom host kernel, ensure CONFIG_
UNIX98_PTYS is set to y in the kernel configuration.

12

Linux From Scratch - Version 12.0-systemd

• M4-1.4.10
• Make-4.0
• Patch-2.5.4
• Perl-5.8.8
• Python-3.4
• Sed-4.1.5
• Tar-1.22
• Texinfo-5.0
• Xz-5.0.0

Important

Note that the symlinks mentioned above are required to build an LFS system using the instructions contained
within this book. Symlinks that point to other software (such as dash, mawk, etc.) may work, but are not
tested or supported by the LFS development team, and may require either deviation from the instructions or
additional patches to some packages.

To see whether your host system has all the appropriate versions, and the ability to compile programs, run the following
commands:

cat > version-check.sh << "EOF"
#!/bin/bash
A script to list version numbers of critical development tools

If you have tools installed in other directories, adjust PATH here AND
in ~lfs/.bashrc (section 4.4) as well.

LC_ALL=C
PATH=/usr/bin:/bin

bail() { echo "FATAL: $1"; exit 1; }
grep --version > /dev/null 2> /dev/null || bail "grep does not work"
sed '' /dev/null || bail "sed does not work"
sort /dev/null || bail "sort does not work"

ver_check()
{
 if ! type -p $2 &>/dev/null
 then
 echo "ERROR: Cannot find $2 ($1)"; return 1;
 fi
 v=$($2 --version 2>&1 | grep -E -o '[0-9]+\.[0-9\.]+[a-z]*' | head -n1)
 if printf '%s\n' $3 $v | sort --version-sort --check &>/dev/null
 then
 printf "OK: %-9s %-6s >= $3\n" "$1" "$v"; return 0;
 else
 printf "ERROR: %-9s is TOO OLD ($3 or later required)\n" "$1";
 return 1;
 fi
}

ver_kernel()
{
 kver=$(uname -r | grep -E -o '^[0-9\.]+')
 if printf '%s\n' $1 $kver | sort --version-sort --check &>/dev/null
 then
 printf "OK: Linux Kernel $kver >= $1\n"; return 0;

13

Linux From Scratch - Version 12.0-systemd

 else
 printf "ERROR: Linux Kernel ($kver) is TOO OLD ($1 or later required)\n" "$kver";
 return 1;
 fi
}

Coreutils first because-sort needs Coreutils >= 7.0
ver_check Coreutils sort 7.0 || bail "--version-sort unsupported"
ver_check Bash bash 3.2
ver_check Binutils ld 2.13.1
ver_check Bison bison 2.7
ver_check Diffutils diff 2.8.1
ver_check Findutils find 4.2.31
ver_check Gawk gawk 4.0.1
ver_check GCC gcc 5.1
ver_check "GCC (C++)" g++ 5.1
ver_check Grep grep 2.5.1a
ver_check Gzip gzip 1.3.12
ver_check M4 m4 1.4.10
ver_check Make make 4.0
ver_check Patch patch 2.5.4
ver_check Perl perl 5.8.8
ver_check Python python3 3.4
ver_check Sed sed 4.1.5
ver_check Tar tar 1.22
ver_check Texinfo texi2any 5.0
ver_check Xz xz 5.0.0
ver_kernel 4.14

if mount | grep -q 'devpts on /dev/pts' && [-e /dev/ptmx]
then echo "OK: Linux Kernel supports UNIX 98 PTY";
else echo "ERROR: Linux Kernel does NOT support UNIX 98 PTY"; fi

alias_check() {
 if $1 --version 2>&1 | grep -qi $2
 then printf "OK: %-4s is $2\n" "$1";
 else printf "ERROR: %-4s is NOT $2\n" "$1"; fi
}
echo "Aliases:"
alias_check awk GNU
alias_check yacc Bison
alias_check sh Bash

echo "Compiler check:"
if printf "int main(){}" | g++ -x c++ -
then echo "OK: g++ works";
else echo "ERROR: g++ does NOT work"; fi
rm -f a.out
EOF

bash version-check.sh

2.3. Building LFS in Stages
LFS is designed to be built in one session. That is, the instructions assume that the system will not be shut down during
the process. This does not mean that the system has to be built in one sitting. The issue is that certain procedures must
be repeated after a reboot when resuming LFS at different points.

2.3.1. Chapters 1–4
These chapters run commands on the host system. When restarting, be certain of one thing:

14

Linux From Scratch - Version 12.0-systemd

• Procedures performed as the root user after Section 2.4 must have the LFS environment variable set FOR THE
ROOT USER.

2.3.2. Chapters 5–6
• The /mnt/lfs partition must be mounted.

• These two chapters must be done as user lfs. A su - lfs command must be issued before performing any task in
these chapters. If you don't do that, you are at risk of installing packages to the host, and potentially rendering it
unusable.

• The procedures in General Compilation Instructions are critical. If there is any doubt a package has been installed
correctly, ensure the previously expanded tarball has been removed, then re-extract the package, and complete all
the instructions in that section.

2.3.3. Chapters 7–10
• The /mnt/lfs partition must be mounted.

• A few operations, from “Changing Ownership” to “Entering the Chroot Environment”, must be done as the root
user, with the LFS environment variable set for the root user.

• When entering chroot, the LFS environment variable must be set for root. The LFS variable is not used after the
chroot environment has been entered.

• The virtual file systems must be mounted. This can be done before or after entering chroot by changing to a
host virtual terminal and, as root, running the commands in Section 7.3.1, “Mounting and Populating /dev” and
Section 7.3.2, “Mounting Virtual Kernel File Systems”.

2.4. Creating a New Partition
Like most other operating systems, LFS is usually installed on a dedicated partition. The recommended approach to
building an LFS system is to use an available empty partition or, if you have enough unpartitioned space, to create one.

A minimal system requires a partition of around 10 gigabytes (GB). This is enough to store all the source tarballs and
compile the packages. However, if the LFS system is intended to be the primary Linux system, additional software will
probably be installed which will require additional space. A 30 GB partition is a reasonable size to provide for growth.
The LFS system itself will not take up this much room. A large portion of this requirement is to provide sufficient free
temporary storage as well as for adding additional capabilities after LFS is complete. Additionally, compiling packages
can require a lot of disk space which will be reclaimed after the package is installed.

Because there is not always enough Random Access Memory (RAM) available for compilation processes, it is a good
idea to use a small disk partition as swap space. This is used by the kernel to store seldom-used data and leave more
memory available for active processes. The swap partition for an LFS system can be the same as the one used by the
host system, in which case it is not necessary to create another one.

Start a disk partitioning program such as cfdisk or fdisk with a command line option naming the hard disk on which
the new partition will be created—for example /dev/sda for the primary disk drive. Create a Linux native partition and
a swap partition, if needed. Please refer to cfdisk(8) or fdisk(8) if you do not yet know how to use the programs.

Note

For experienced users, other partitioning schemes are possible. The new LFS system can be on a software
RAID array or an LVM logical volume. However, some of these options require an initramfs, which is an
advanced topic. These partitioning methodologies are not recommended for first time LFS users.

15

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/raid.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/aboutlvm.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/initramfs.html

Linux From Scratch - Version 12.0-systemd

Remember the designation of the new partition (e.g., sda5). This book will refer to this as the LFS partition. Also
remember the designation of the swap partition. These names will be needed later for the /etc/fstab file.

2.4.1. Other Partition Issues
Requests for advice on system partitioning are often posted on the LFS mailing lists. This is a highly subjective topic.
The default for most distributions is to use the entire drive with the exception of one small swap partition. This is not
optimal for LFS for several reasons. It reduces flexibility, makes sharing of data across multiple distributions or LFS
builds more difficult, makes backups more time consuming, and can waste disk space through inefficient allocation
of file system structures.

2.4.1.1. The Root Partition

A root LFS partition (not to be confused with the /root directory) of twenty gigabytes is a good compromise for most
systems. It provides enough space to build LFS and most of BLFS, but is small enough so that multiple partitions can
be easily created for experimentation.

2.4.1.2. The Swap Partition

Most distributions automatically create a swap partition. Generally the recommended size of the swap partition is about
twice the amount of physical RAM, however this is rarely needed. If disk space is limited, hold the swap partition to
two gigabytes and monitor the amount of disk swapping.

If you want to use the hibernation feature (suspend-to-disk) of Linux, it writes out the contents of RAM to the swap
partition before turning off the machine. In this case the size of the swap partition should be at least as large as the
system's installed RAM.

Swapping is never good. For mechanical hard drives you can generally tell if a system is swapping by just listening to
disk activity and observing how the system reacts to commands. With an SSD you will not be able to hear swapping,
but you can tell how much swap space is being used by running the top or free programs. Use of an SSD for a swap
partition should be avoided if possible. The first reaction to swapping should be to check for an unreasonable command
such as trying to edit a five gigabyte file. If swapping becomes a normal occurrence, the best solution is to purchase
more RAM for your system.

2.4.1.3. The Grub Bios Partition

If the boot disk has been partitioned with a GUID Partition Table (GPT), then a small, typically 1 MB, partition must
be created if it does not already exist. This partition is not formatted, but must be available for GRUB to use during
installation of the boot loader. This partition will normally be labeled 'BIOS Boot' if using fdisk or have a code of
EF02 if using the gdisk command.

Note

The Grub Bios partition must be on the drive that the BIOS uses to boot the system. This is not necessarily
the drive that holds the LFS root partition. The disks on a system may use different partition table types. The
necessity of the Grub Bios partition depends only on the partition table type of the boot disk.

2.4.1.4. Convenience Partitions

There are several other partitions that are not required, but should be considered when designing a disk layout. The
following list is not comprehensive, but is meant as a guide.

16

Linux From Scratch - Version 12.0-systemd

• /boot – Highly recommended. Use this partition to store kernels and other booting information. To minimize
potential boot problems with larger disks, make this the first physical partition on your first disk drive. A partition
size of 200 megabytes is adequate.

• /boot/efi – The EFI System Partition, which is needed for booting the system with UEFI. Read the BLFS page for
details.

• /home – Highly recommended. Share your home directory and user customization across multiple distributions or
LFS builds. The size is generally fairly large and depends on available disk space.

• /usr – In LFS, /bin, /lib, and /sbin are symlinks to their counterparts in /usr. So /usr contains all the binaries
needed for the system to run. For LFS a separate partition for /usr is normally not needed. If you create it anyway,
you should make a partition large enough to fit all the programs and libraries in the system. The root partition
can be very small (maybe just one gigabyte) in this configuration, so it's suitable for a thin client or diskless
workstation (where /usr is mounted from a remote server). However, you should be aware that an initramfs (not
covered by LFS) will be needed to boot a system with a separate /usr partition.

• /opt – This directory is most useful for BLFS, where multiple large packages like KDE or Texlive can be installed
without embedding the files in the /usr hierarchy. If used, 5 to 10 gigabytes is generally adequate.

• /tmp – By default, systemd mounts a tmpfs here. If you want to override that behavior, follow Section 9.10.3,
“Disabling tmpfs for /tmp” when configuring the LFS system.

• /usr/src – This partition is very useful for providing a location to store BLFS source files and share them across
LFS builds. It can also be used as a location for building BLFS packages. A reasonably large partition of 30-50
gigabytes provides plenty of room.

Any separate partition that you want automatically mounted when the system starts must be specified in the /etc/fstab
file. Details about how to specify partitions will be discussed in Section 10.2, “Creating the /etc/fstab File”.

2.5. Creating a File System on the Partition
A partition is just a range of sectors on a disk drive, delimited by boundaries set in a partition table. Before the operating
system can use a partition to store any files, the partition must be formatted to contain a file system, typically consisting
of a label, directory blocks, data blocks, and an indexing scheme to locate a particular file on demand. The file system
also helps the OS keep track of free space on the partition, reserve the needed sectors when a new file is created or an
existing file is extended, and recycle the free data segments created when files are deleted. It may also provide support
for data redundancy, and for error recovery.

LFS can use any file system recognized by the Linux kernel, but the most common types are ext3 and ext4. The choice
of the right file system can be complex; it depends on the characteristics of the files and the size of the partition. For
example:

ext2
is suitable for small partitions that are updated infrequently such as /boot.

ext3
is an upgrade to ext2 that includes a journal to help recover the partition's status in the case of an unclean shutdown.
It is commonly used as a general purpose file system.

ext4
is the latest version of the ext family of file systems. It provides several new capabilities including nano-second
timestamps, creation and use of very large files (up to 16 TB), and speed improvements.

17

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/grub-setup.html

Linux From Scratch - Version 12.0-systemd

Other file systems, including FAT32, NTFS, ReiserFS, JFS, and XFS are useful for specialized purposes. More
information about these file systems, and many others, can be found at https://en.wikipedia.org/wiki/Comparison_of_
file_systems.

LFS assumes that the root file system (/) is of type ext4. To create an ext4 file system on the LFS partition, issue the
following command:

mkfs -v -t ext4 /dev/<xxx>

Replace <xxx> with the name of the LFS partition.

If you are using an existing swap partition, there is no need to format it. If a new swap partition was created, it will
need to be initialized with this command:

mkswap /dev/<yyy>

Replace <yyy> with the name of the swap partition.

2.6. Setting The $LFS Variable
Throughout this book, the environment variable LFS will be used several times. You should ensure that this variable
is always defined throughout the LFS build process. It should be set to the name of the directory where you will be
building your LFS system - we will use /mnt/lfs as an example, but you may choose any directory name you want. If
you are building LFS on a separate partition, this directory will be the mount point for the partition. Choose a directory
location and set the variable with the following command:

export LFS=/mnt/lfs

Having this variable set is beneficial in that commands such as mkdir -v $LFS/tools can be typed literally. The shell
will automatically replace “$LFS” with “/mnt/lfs” (or whatever value the variable was set to) when it processes the
command line.

Caution

Do not forget to check that LFS is set whenever you leave and reenter the current working environment (such
as when doing a su to root or another user). Check that the LFS variable is set up properly with:

echo $LFS

Make sure the output shows the path to your LFS system's build location, which is /mnt/lfs if the provided
example was followed. If the output is incorrect, use the command given earlier on this page to set $LFS to
the correct directory name.

Note

One way to ensure that the LFS variable is always set is to edit the .bash_profile file in both your personal
home directory and in /root/.bash_profile and enter the export command above. In addition, the shell
specified in the /etc/passwd file for all users that need the LFS variable must be bash to ensure that the /root/
.bash_profile file is incorporated as a part of the login process.

Another consideration is the method that is used to log into the host system. If logging in through a graphical
display manager, the user's .bash_profile is not normally used when a virtual terminal is started. In this case,
add the export command to the .bashrc file for the user and root. In addition, some distributions use an "if"
test, and do not run the remaining .bashrc instructions for a non-interactive bash invocation. Be sure to place
the export command ahead of the test for non-interactive use.

18

https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Comparison_of_file_systems

Linux From Scratch - Version 12.0-systemd

2.7. Mounting the New Partition
Now that a file system has been created, the partition must be mounted so the host system can access it. This book
assumes that the file system is mounted at the directory specified by the LFS environment variable described in the
previous section.

Strictly speaking, one cannot "mount a partition". One mounts the file system embedded in that partition. But since
a single partition can't contain more than one file system, people often speak of the partition and the associated file
system as if they were one and the same.

Create the mount point and mount the LFS file system with these commands:

mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS

Replace <xxx> with the name of the LFS partition.

If you are using multiple partitions for LFS (e.g., one for / and another for /home), mount them like this:

mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS
mkdir -v $LFS/home
mount -v -t ext4 /dev/<yyy> $LFS/home

Replace <xxx> and <yyy> with the appropriate partition names.

Ensure that this new partition is not mounted with permissions that are too restrictive (such as the nosuid or nodev
options). Run the mount command without any parameters to see what options are set for the mounted LFS partition.
If nosuid and/or nodev are set, the partition must be remounted.

Warning

The above instructions assume that you will not restart your computer throughout the LFS process. If you shut
down your system, you will either need to remount the LFS partition each time you restart the build process,
or modify the host system's /etc/fstab file to automatically remount it when you reboot. For example, you
might add this line to your /etc/fstab file:

/dev/<xxx> /mnt/lfs ext4 defaults 1 1

If you use additional optional partitions, be sure to add them also.

If you are using a swap partition, ensure that it is enabled using the swapon command:

/sbin/swapon -v /dev/<zzz>

Replace <zzz> with the name of the swap partition.

Now that the new LFS partition is open for business, it's time to download the packages.

19

Linux From Scratch - Version 12.0-systemd

Chapter 3. Packages and Patches

3.1. Introduction
This chapter includes a list of packages that need to be downloaded in order to build a basic Linux system. The listed
version numbers correspond to versions of the software that are known to work, and this book is based on their use. We
highly recommend against using different versions, because the build commands for one version may not work with a
different version, unless the different version is specified by an LFS erratum or security advisory. The newest package
versions may also have problems that require work-arounds. These work-arounds will be developed and stabilized in
the development version of the book.

For some packages, the release tarball and the (Git or SVN) repository snapshot tarball for that release may be
published with similar file names. A release tarball contains generated files (for example, a configure script generated
by autoconf), in addition to the contents of the corresponding repository snapshot. The book uses release tarballs
whenever possible. Using a repository snapshot instead of a release tarball specified by the book will cause problems.

Download locations may not always be accessible. If a download location has changed since this book was published,
Google (https://www.google.com/) provides a useful search engine for most packages. If this search is unsuccessful,
try one of the alternative means of downloading at https://www.linuxfromscratch.org/lfs/mirrors.html#files.

Downloaded packages and patches will need to be stored somewhere that is conveniently available throughout the
entire build. A working directory is also required to unpack the sources and build them. $LFS/sources can be used both
as the place to store the tarballs and patches and as a working directory. By using this directory, the required elements
will be located on the LFS partition and will be available during all stages of the building process.

To create this directory, execute the following command, as user root, before starting the download session:

mkdir -v $LFS/sources

Make this directory writable and sticky. “Sticky” means that even if multiple users have write permission on a directory,
only the owner of a file can delete the file within a sticky directory. The following command will enable the write
and sticky modes:

chmod -v a+wt $LFS/sources

There are several ways to obtain all the necessary packages and patches to build LFS:

• The files can be downloaded individually as described in the next two sections.

• For stable versions of the book, a tarball of all the needed files can be downloaded from one of the mirror sites
listed at https://www.linuxfromscratch.org/mirrors.html#files.

• The files can be downloaded using wget and a wget-list as described below.

To download all of the packages and patches by using wget-list-systemd as an input to the wget command, use:

wget --input-file=wget-list-systemd --continue --directory-prefix=$LFS/sources

Additionally, starting with LFS-7.0, there is a separate file, md5sums, which can be used to verify that all the correct
packages are available before proceeding. Place that file in $LFS/sources and run:

pushd $LFS/sources
 md5sum -c md5sums
popd

20

https://www.google.com/
https://www.linuxfromscratch.org/lfs/mirrors.html#files
https://www.linuxfromscratch.org/mirrors.html#files
../wget-list-systemd
../md5sums

Linux From Scratch - Version 12.0-systemd

This check can be used after retrieving the needed files with any of the methods listed above.

If the packages and patches are downloaded as a non-root user, these files will be owned by the user. The file system
records the owner by its UID, and the UID of a normal user in the host distro is not assigned in LFS. So the files will
be left owned by an unnamed UID in the final LFS system. If you won't assign the same UID for your user in the LFS
system, change the owners of these files to root now to avoid this issue:

chown root:root $LFS/sources/*

3.2. All Packages

Note

Read the security advisories before downloading packages to figure out if a newer version of any package
should be used to avoid security vulnerabilities.

The upstream sources may remove old releases, especially when those releases contain a security
vulnerability. If one URL below is not reachable, you should read the security advisories first to figure out if
a newer version (with the vulnerability fixed) should be used. If not, try to download the removed package
from a mirror. Although it's possible to download an old release from a mirror even if this release has been
removed because of a vulnerability, it's not a good idea to use a release known to be vulnerable when building
your system.

Download or otherwise obtain the following packages:

• Acl (2.3.1) - 348 KB:
Home page: https://savannah.nongnu.org/projects/acl
Download: https://download.savannah.gnu.org/releases/acl/acl-2.3.1.tar.xz
MD5 sum: 95ce715fe09acca7c12d3306d0f076b2

• Attr (2.5.1) - 456 KB:
Home page: https://savannah.nongnu.org/projects/attr
Download: https://download.savannah.gnu.org/releases/attr/attr-2.5.1.tar.gz
MD5 sum: ac1c5a7a084f0f83b8cace34211f64d8

• Autoconf (2.71) - 1,263 KB:
Home page: https://www.gnu.org/software/autoconf/
Download: https://ftp.gnu.org/gnu/autoconf/autoconf-2.71.tar.xz
MD5 sum: 12cfa1687ffa2606337efe1a64416106

• Automake (1.16.5) - 1,565 KB:
Home page: https://www.gnu.org/software/automake/
Download: https://ftp.gnu.org/gnu/automake/automake-1.16.5.tar.xz
MD5 sum: 4017e96f89fca45ca946f1c5db6be714

• Bash (5.2.15) - 10,695 KB:
Home page: https://www.gnu.org/software/bash/
Download: https://ftp.gnu.org/gnu/bash/bash-5.2.15.tar.gz
MD5 sum: 4281bb43497f3905a308430a8d6a30a5

21

https://www.linuxfromscratch.org/lfs/advisories/
https://savannah.nongnu.org/projects/acl
https://download.savannah.gnu.org/releases/acl/acl-2.3.1.tar.xz
https://savannah.nongnu.org/projects/attr
https://download.savannah.gnu.org/releases/attr/attr-2.5.1.tar.gz
https://www.gnu.org/software/autoconf/
https://ftp.gnu.org/gnu/autoconf/autoconf-2.71.tar.xz
https://www.gnu.org/software/automake/
https://ftp.gnu.org/gnu/automake/automake-1.16.5.tar.xz
https://www.gnu.org/software/bash/
https://ftp.gnu.org/gnu/bash/bash-5.2.15.tar.gz

Linux From Scratch - Version 12.0-systemd

• Bc (6.6.0) - 455 KB:
Home page: https://git.gavinhoward.com/gavin/bc
Download: https://github.com/gavinhoward/bc/releases/download/6.6.0/bc-6.6.0.tar.xz
MD5 sum: a148cbaaf8ff813b7289a00539e74a5f

• Binutils (2.41) - 26,139 KB:
Home page: https://www.gnu.org/software/binutils/
Download: https://sourceware.org/pub/binutils/releases/binutils-2.41.tar.xz
MD5 sum: 256d7e0ad998e423030c84483a7c1e30

• Bison (3.8.2) - 2,752 KB:
Home page: https://www.gnu.org/software/bison/
Download: https://ftp.gnu.org/gnu/bison/bison-3.8.2.tar.xz
MD5 sum: c28f119f405a2304ff0a7ccdcc629713

• Bzip2 (1.0.8) - 792 KB:
Download: https://www.sourceware.org/pub/bzip2/bzip2-1.0.8.tar.gz
MD5 sum: 67e051268d0c475ea773822f7500d0e5

• Check (0.15.2) - 760 KB:
Home page: https://libcheck.github.io/check
Download: https://github.com/libcheck/check/releases/download/0.15.2/check-0.15.2.tar.gz
MD5 sum: 50fcafcecde5a380415b12e9c574e0b2

• Coreutils (9.3) - 5,673 KB:
Home page: https://www.gnu.org/software/coreutils/
Download: https://ftp.gnu.org/gnu/coreutils/coreutils-9.3.tar.xz
MD5 sum: 040b4b7acaf89499834bfc79609af29f

• D-Bus (1.14.8) - 1,340 KB:
Home page: https://www.freedesktop.org/wiki/Software/dbus
Download: https://dbus.freedesktop.org/releases/dbus/dbus-1.14.8.tar.xz
MD5 sum: da42f55aeec51b355587bc3062fc2d41

• DejaGNU (1.6.3) - 608 KB:
Home page: https://www.gnu.org/software/dejagnu/
Download: https://ftp.gnu.org/gnu/dejagnu/dejagnu-1.6.3.tar.gz
MD5 sum: 68c5208c58236eba447d7d6d1326b821

• Diffutils (3.10) - 1,587 KB:
Home page: https://www.gnu.org/software/diffutils/
Download: https://ftp.gnu.org/gnu/diffutils/diffutils-3.10.tar.xz
MD5 sum: 2745c50f6f4e395e7b7d52f902d075bf

• E2fsprogs (1.47.0) - 9,412 KB:
Home page: http://e2fsprogs.sourceforge.net/
Download: https://downloads.sourceforge.net/project/e2fsprogs/e2fsprogs/v1.47.0/e2fsprogs-1.47.0.tar.gz
MD5 sum: 6b4f18a33873623041857b4963641ee9

• Elfutils (0.189) - 8,936 KB:
Home page: https://sourceware.org/elfutils/
Download: https://sourceware.org/ftp/elfutils/0.189/elfutils-0.189.tar.bz2
MD5 sum: 5cfaa711a90cb670406cd495aeaa6030

22

https://git.gavinhoward.com/gavin/bc
https://github.com/gavinhoward/bc/releases/download/6.6.0/bc-6.6.0.tar.xz
https://www.gnu.org/software/binutils/
https://sourceware.org/pub/binutils/releases/binutils-2.41.tar.xz
https://www.gnu.org/software/bison/
https://ftp.gnu.org/gnu/bison/bison-3.8.2.tar.xz
https://www.sourceware.org/pub/bzip2/bzip2-1.0.8.tar.gz
https://libcheck.github.io/check
https://github.com/libcheck/check/releases/download/0.15.2/check-0.15.2.tar.gz
https://www.gnu.org/software/coreutils/
https://ftp.gnu.org/gnu/coreutils/coreutils-9.3.tar.xz
https://www.freedesktop.org/wiki/Software/dbus
https://dbus.freedesktop.org/releases/dbus/dbus-1.14.8.tar.xz
https://www.gnu.org/software/dejagnu/
https://ftp.gnu.org/gnu/dejagnu/dejagnu-1.6.3.tar.gz
https://www.gnu.org/software/diffutils/
https://ftp.gnu.org/gnu/diffutils/diffutils-3.10.tar.xz
http://e2fsprogs.sourceforge.net/
https://downloads.sourceforge.net/project/e2fsprogs/e2fsprogs/v1.47.0/e2fsprogs-1.47.0.tar.gz
https://sourceware.org/elfutils/
https://sourceware.org/ftp/elfutils/0.189/elfutils-0.189.tar.bz2

Linux From Scratch - Version 12.0-systemd

• Expat (2.5.0) - 450 KB:
Home page: https://libexpat.github.io/
Download: https://prdownloads.sourceforge.net/expat/expat-2.5.0.tar.xz
MD5 sum: ac6677b6d1b95d209ab697ce8b688704

• Expect (5.45.4) - 618 KB:
Home page: https://core.tcl.tk/expect/
Download: https://prdownloads.sourceforge.net/expect/expect5.45.4.tar.gz
MD5 sum: 00fce8de158422f5ccd2666512329bd2

• File (5.45) - 1,218 KB:
Home page: https://www.darwinsys.com/file/
Download: https://astron.com/pub/file/file-5.45.tar.gz
MD5 sum: 26b2a96d4e3a8938827a1e572afd527a

• Findutils (4.9.0) - 1,999 KB:
Home page: https://www.gnu.org/software/findutils/
Download: https://ftp.gnu.org/gnu/findutils/findutils-4.9.0.tar.xz
MD5 sum: 4a4a547e888a944b2f3af31d789a1137

• Flex (2.6.4) - 1,386 KB:
Home page: https://github.com/westes/flex
Download: https://github.com/westes/flex/releases/download/v2.6.4/flex-2.6.4.tar.gz
MD5 sum: 2882e3179748cc9f9c23ec593d6adc8d

• Flit-core (3.9.0) - 41 KB:
Home page: https://pypi.org/project/flit-core/
Download: https://pypi.org/packages/source/f/flit-core/flit_core-3.9.0.tar.gz
MD5 sum: 3bc52f1952b9a78361114147da63c35b

• Gawk (5.2.2) - 3,324 KB:
Home page: https://www.gnu.org/software/gawk/
Download: https://ftp.gnu.org/gnu/gawk/gawk-5.2.2.tar.xz
MD5 sum: d63b4de2c722cbd9b8cc8e6f14d78a1e

• GCC (13.2.0) - 85,800 KB:
Home page: https://gcc.gnu.org/
Download: https://ftp.gnu.org/gnu/gcc/gcc-13.2.0/gcc-13.2.0.tar.xz
MD5 sum: e0e48554cc6e4f261d55ddee9ab69075
SHA256 sum:

• GDBM (1.23) - 1,092 KB:
Home page: https://www.gnu.org/software/gdbm/
Download: https://ftp.gnu.org/gnu/gdbm/gdbm-1.23.tar.gz
MD5 sum: 8551961e36bf8c70b7500d255d3658ec

• Gettext (0.22) - 9,775 KB:
Home page: https://www.gnu.org/software/gettext/
Download: https://ftp.gnu.org/gnu/gettext/gettext-0.22.tar.xz
MD5 sum: db2f3daf34fd5b85ab1a56f9033e42d1

23

https://libexpat.github.io/
https://prdownloads.sourceforge.net/expat/expat-2.5.0.tar.xz
https://core.tcl.tk/expect/
https://prdownloads.sourceforge.net/expect/expect5.45.4.tar.gz
https://www.darwinsys.com/file/
https://astron.com/pub/file/file-5.45.tar.gz
https://www.gnu.org/software/findutils/
https://ftp.gnu.org/gnu/findutils/findutils-4.9.0.tar.xz
https://github.com/westes/flex
https://github.com/westes/flex/releases/download/v2.6.4/flex-2.6.4.tar.gz
https://pypi.org/project/flit-core/
https://pypi.org/packages/source/f/flit-core/flit_core-3.9.0.tar.gz
https://www.gnu.org/software/gawk/
https://ftp.gnu.org/gnu/gawk/gawk-5.2.2.tar.xz
https://gcc.gnu.org/
https://ftp.gnu.org/gnu/gcc/gcc-13.2.0/gcc-13.2.0.tar.xz
https://www.gnu.org/software/gdbm/
https://ftp.gnu.org/gnu/gdbm/gdbm-1.23.tar.gz
https://www.gnu.org/software/gettext/
https://ftp.gnu.org/gnu/gettext/gettext-0.22.tar.xz

Linux From Scratch - Version 12.0-systemd

• Glibc (2.38) - 18,471 KB:
Home page: https://www.gnu.org/software/libc/
Download: https://ftp.gnu.org/gnu/glibc/glibc-2.38.tar.xz
MD5 sum: 778cce0ea6bf7f84ca8caacf4a01f45b

Note
The Glibc developers maintain a Git branch containing patches considered worthy for Glibc-2.38 but
unfortunately developed after Glibc-2.38 release. The LFS editors will issue a security advisory if any
security fix is added into the branch, but no actions will be taken for other newly added patches. You may
review the patches yourself and incorporate some patches if you consider them important.

• GMP (6.3.0) - 2,046 KB:
Home page: https://www.gnu.org/software/gmp/
Download: https://ftp.gnu.org/gnu/gmp/gmp-6.3.0.tar.xz
MD5 sum: 956dc04e864001a9c22429f761f2c283

• Gperf (3.1) - 1,188 KB:
Home page: https://www.gnu.org/software/gperf/
Download: https://ftp.gnu.org/gnu/gperf/gperf-3.1.tar.gz
MD5 sum: 9e251c0a618ad0824b51117d5d9db87e

• Grep (3.11) - 1,664 KB:
Home page: https://www.gnu.org/software/grep/
Download: https://ftp.gnu.org/gnu/grep/grep-3.11.tar.xz
MD5 sum: 7c9bbd74492131245f7cdb291fa142c0

• Groff (1.23.0) - 7,259 KB:
Home page: https://www.gnu.org/software/groff/
Download: https://ftp.gnu.org/gnu/groff/groff-1.23.0.tar.gz
MD5 sum: 5e4f40315a22bb8a158748e7d5094c7d

• GRUB (2.06) - 6,428 KB:
Home page: https://www.gnu.org/software/grub/
Download: https://ftp.gnu.org/gnu/grub/grub-2.06.tar.xz
MD5 sum: cf0fd928b1e5479c8108ee52cb114363

• Gzip (1.12) - 807 KB:
Home page: https://www.gnu.org/software/gzip/
Download: https://ftp.gnu.org/gnu/gzip/gzip-1.12.tar.xz
MD5 sum: 9608e4ac5f061b2a6479dc44e917a5db

• Iana-Etc (20230810) - 588 KB:
Home page: https://www.iana.org/protocols
Download: https://github.com/Mic92/iana-etc/releases/download/20230810/iana-etc-20230810.tar.gz
MD5 sum: 0502bd41cc0bf1c1c3cd8651058b9650

• Inetutils (2.4) - 1,522 KB:
Home page: https://www.gnu.org/software/inetutils/
Download: https://ftp.gnu.org/gnu/inetutils/inetutils-2.4.tar.xz
MD5 sum: 319d65bb5a6f1847c4810651f3b4ba74
SHA256 sum:

24

https://www.gnu.org/software/libc/
https://ftp.gnu.org/gnu/glibc/glibc-2.38.tar.xz
https://sourceware.org/git/?p=glibc.git;a=shortlog;h=refs/heads/release/2.38/master
https://www.gnu.org/software/gmp/
https://ftp.gnu.org/gnu/gmp/gmp-6.3.0.tar.xz
https://www.gnu.org/software/gperf/
https://ftp.gnu.org/gnu/gperf/gperf-3.1.tar.gz
https://www.gnu.org/software/grep/
https://ftp.gnu.org/gnu/grep/grep-3.11.tar.xz
https://www.gnu.org/software/groff/
https://ftp.gnu.org/gnu/groff/groff-1.23.0.tar.gz
https://www.gnu.org/software/grub/
https://ftp.gnu.org/gnu/grub/grub-2.06.tar.xz
https://www.gnu.org/software/gzip/
https://ftp.gnu.org/gnu/gzip/gzip-1.12.tar.xz
https://www.iana.org/protocols
https://github.com/Mic92/iana-etc/releases/download/20230810/iana-etc-20230810.tar.gz
https://www.gnu.org/software/inetutils/
https://ftp.gnu.org/gnu/inetutils/inetutils-2.4.tar.xz

Linux From Scratch - Version 12.0-systemd

• Intltool (0.51.0) - 159 KB:
Home page: https://freedesktop.org/wiki/Software/intltool
Download: https://launchpad.net/intltool/trunk/0.51.0/+download/intltool-0.51.0.tar.gz
MD5 sum: 12e517cac2b57a0121cda351570f1e63

• IPRoute2 (6.4.0) - 904 KB:
Home page: https://www.kernel.org/pub/linux/utils/net/iproute2/
Download: https://www.kernel.org/pub/linux/utils/net/iproute2/iproute2-6.4.0.tar.xz
MD5 sum: 90ce0eb84a8f1e2b14ffa77e8eb3f5ed

• Jinja2 (3.1.2) - 262 KB:
Home page: https://jinja.palletsprojects.com/en/3.0.x/
Download: https://pypi.org/packages/source/J/Jinja2/Jinja2-3.1.2.tar.gz
MD5 sum: d31148abd89c1df1cdb077a55db27d02

• Kbd (2.6.1) - 1,554 KB:
Home page: https://kbd-project.org/
Download: https://www.kernel.org/pub/linux/utils/kbd/kbd-2.6.1.tar.xz
MD5 sum: 986241b5d94c6bd4ed2f6d2a5ab4320b

• Kmod (30) - 555 KB:
Download: https://www.kernel.org/pub/linux/utils/kernel/kmod/kmod-30.tar.xz
MD5 sum: 85202f0740a75eb52f2163c776f9b564

• Less (643) - 579 KB:
Home page: https://www.greenwoodsoftware.com/less/
Download: https://www.greenwoodsoftware.com/less/less-643.tar.gz
MD5 sum: cf05e2546a3729492b944b4874dd43dd

• Libcap (2.69) - 185 KB:
Home page: https://sites.google.com/site/fullycapable/
Download: https://www.kernel.org/pub/linux/libs/security/linux-privs/libcap2/libcap-2.69.tar.xz
MD5 sum: 4667bacb837f9ac4adb4a1a0266f4b65

• Libffi (3.4.4) - 1,331 KB:
Home page: https://sourceware.org/libffi/
Download: https://github.com/libffi/libffi/releases/download/v3.4.4/libffi-3.4.4.tar.gz
MD5 sum: 0da1a5ed7786ac12dcbaf0d499d8a049

• Libpipeline (1.5.7) - 956 KB:
Home page: https://libpipeline.nongnu.org/
Download: https://download.savannah.gnu.org/releases/libpipeline/libpipeline-1.5.7.tar.gz
MD5 sum: 1a48b5771b9f6c790fb4efdb1ac71342

• Libtool (2.4.7) - 996 KB:
Home page: https://www.gnu.org/software/libtool/
Download: https://ftp.gnu.org/gnu/libtool/libtool-2.4.7.tar.xz
MD5 sum: 2fc0b6ddcd66a89ed6e45db28fa44232

• Libxcrypt (4.4.36) - 610 KB:
Home page: https://github.com/besser82/libxcrypt/
Download: https://github.com/besser82/libxcrypt/releases/download/v4.4.36/libxcrypt-4.4.36.tar.xz
MD5 sum: b84cd4104e08c975063ec6c4d0372446

25

https://freedesktop.org/wiki/Software/intltool
https://launchpad.net/intltool/trunk/0.51.0/+download/intltool-0.51.0.tar.gz
https://www.kernel.org/pub/linux/utils/net/iproute2/
https://www.kernel.org/pub/linux/utils/net/iproute2/iproute2-6.4.0.tar.xz
https://jinja.palletsprojects.com/en/3.0.x/
https://pypi.org/packages/source/J/Jinja2/Jinja2-3.1.2.tar.gz
https://kbd-project.org/
https://www.kernel.org/pub/linux/utils/kbd/kbd-2.6.1.tar.xz
https://www.kernel.org/pub/linux/utils/kernel/kmod/kmod-30.tar.xz
https://www.greenwoodsoftware.com/less/
https://www.greenwoodsoftware.com/less/less-643.tar.gz
https://sites.google.com/site/fullycapable/
https://www.kernel.org/pub/linux/libs/security/linux-privs/libcap2/libcap-2.69.tar.xz
https://sourceware.org/libffi/
https://github.com/libffi/libffi/releases/download/v3.4.4/libffi-3.4.4.tar.gz
https://libpipeline.nongnu.org/
https://download.savannah.gnu.org/releases/libpipeline/libpipeline-1.5.7.tar.gz
https://www.gnu.org/software/libtool/
https://ftp.gnu.org/gnu/libtool/libtool-2.4.7.tar.xz
https://github.com/besser82/libxcrypt/
https://github.com/besser82/libxcrypt/releases/download/v4.4.36/libxcrypt-4.4.36.tar.xz

Linux From Scratch - Version 12.0-systemd

• Linux (6.4.12) - 134,616 KB:
Home page: https://www.kernel.org/
Download: https://www.kernel.org/pub/linux/kernel/v6.x/linux-6.4.12.tar.xz
MD5 sum: 24570ba0ef9dd592bd640a1a41686fac

Note
The Linux kernel is updated quite frequently, many times due to discoveries of security vulnerabilities. The
latest available stable kernel version may be used, unless the errata page says otherwise.
For users with limited speed or expensive bandwidth who wish to update the Linux kernel, a baseline
version of the package and patches can be downloaded separately. This may save some time or cost for a
subsequent patch level upgrade within a minor release.

• M4 (1.4.19) - 1,617 KB:
Home page: https://www.gnu.org/software/m4/
Download: https://ftp.gnu.org/gnu/m4/m4-1.4.19.tar.xz
MD5 sum: 0d90823e1426f1da2fd872df0311298d

• Make (4.4.1) - 2,300 KB:
Home page: https://www.gnu.org/software/make/
Download: https://ftp.gnu.org/gnu/make/make-4.4.1.tar.gz
MD5 sum: c8469a3713cbbe04d955d4ae4be23eeb

• Man-DB (2.11.2) - 1,908 KB:
Home page: https://www.nongnu.org/man-db/
Download: https://download.savannah.gnu.org/releases/man-db/man-db-2.11.2.tar.xz
MD5 sum: a7d59fb2df6158c44f8f7009dcc6d875

• Man-pages (6.05.01) - 2,144 KB:
Home page: https://www.kernel.org/doc/man-pages/
Download: https://www.kernel.org/pub/linux/docs/man-pages/man-pages-6.05.01.tar.xz
MD5 sum: de4563b797cf9b1e0b0d73628b35e442

• MarkupSafe (2.1.3) - 19 KB:
Home page: https://palletsprojects.com/p/markupsafe/
Download: https://pypi.org/packages/source/M/MarkupSafe/MarkupSafe-2.1.3.tar.gz
MD5 sum: ca33f119bd0551ce15837f58bb180214

• Meson (1.2.1) - 2,131 KB:
Home page: https://mesonbuild.com
Download: https://github.com/mesonbuild/meson/releases/download/1.2.1/meson-1.2.1.tar.gz
MD5 sum: e3cc846536189aacd7d01858a45ca9af

• MPC (1.3.1) - 756 KB:
Home page: https://www.multiprecision.org/
Download: https://ftp.gnu.org/gnu/mpc/mpc-1.3.1.tar.gz
MD5 sum: 5c9bc658c9fd0f940e8e3e0f09530c62

• MPFR (4.2.0) - 1,443 KB:
Home page: https://www.mpfr.org/
Download: https://ftp.gnu.org/gnu/mpfr/mpfr-4.2.0.tar.xz
MD5 sum: a25091f337f25830c16d2054d74b5af7

26

https://www.kernel.org/
https://www.kernel.org/pub/linux/kernel/v6.x/linux-6.4.12.tar.xz
https://www.gnu.org/software/m4/
https://ftp.gnu.org/gnu/m4/m4-1.4.19.tar.xz
https://www.gnu.org/software/make/
https://ftp.gnu.org/gnu/make/make-4.4.1.tar.gz
https://www.nongnu.org/man-db/
https://download.savannah.gnu.org/releases/man-db/man-db-2.11.2.tar.xz
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/pub/linux/docs/man-pages/man-pages-6.05.01.tar.xz
https://palletsprojects.com/p/markupsafe/
https://pypi.org/packages/source/M/MarkupSafe/MarkupSafe-2.1.3.tar.gz
https://mesonbuild.com
https://github.com/mesonbuild/meson/releases/download/1.2.1/meson-1.2.1.tar.gz
https://www.multiprecision.org/
https://ftp.gnu.org/gnu/mpc/mpc-1.3.1.tar.gz
https://www.mpfr.org/
https://ftp.gnu.org/gnu/mpfr/mpfr-4.2.0.tar.xz

Linux From Scratch - Version 12.0-systemd

• Ncurses (6.4) - 3,528 KB:
Home page: https://www.gnu.org/software/ncurses/
Download: https://invisible-mirror.net/archives/ncurses/ncurses-6.4.tar.gz
MD5 sum: 5a62487b5d4ac6b132fe2bf9f8fad29b

• Ninja (1.11.1) - 225 KB:
Home page: https://ninja-build.org/
Download: https://github.com/ninja-build/ninja/archive/v1.11.1/ninja-1.11.1.tar.gz
MD5 sum: 32151c08211d7ca3c1d832064f6939b0

• OpenSSL (3.1.2) - 15,196 KB:
Home page: https://www.openssl.org/
Download: https://www.openssl.org/source/openssl-3.1.2.tar.gz
MD5 sum: 1d7861f969505e67b8677e205afd9ff4

• Patch (2.7.6) - 766 KB:
Home page: https://savannah.gnu.org/projects/patch/
Download: https://ftp.gnu.org/gnu/patch/patch-2.7.6.tar.xz
MD5 sum: 78ad9937e4caadcba1526ef1853730d5

• Perl (5.38.0) - 13,248 KB:
Home page: https://www.perl.org/
Download: https://www.cpan.org/src/5.0/perl-5.38.0.tar.xz
MD5 sum: e1c8aaec897dd386c741f97eef9f2e87

• Pkgconf (2.0.1) - 304 KB:
Home page: http://pkgconf.org/
Download: https://distfiles.ariadne.space/pkgconf/pkgconf-2.0.1.tar.xz
MD5 sum: efc1318f368bb592aba6ebb18d9ff254

• Procps (4.0.3) - 1,268 KB:
Home page: https://sourceforge.net/projects/procps-ng
Download: https://sourceforge.net/projects/procps-ng/files/Production/procps-ng-4.0.3.tar.xz
MD5 sum: 22b287bcd758831cbaf3356cd3054fe7

• Psmisc (23.6) - 415 KB:
Home page: https://gitlab.com/psmisc/psmisc
Download: https://sourceforge.net/projects/psmisc/files/psmisc/psmisc-23.6.tar.xz
MD5 sum: ed3206da1184ce9e82d607dc56c52633

• Python (3.11.4) - 19,488 KB:
Home page: https://www.python.org/
Download: https://www.python.org/ftp/python/3.11.4/Python-3.11.4.tar.xz
MD5 sum: fb7f7eae520285788449d569e45b6718

• Python Documentation (3.11.4) - 7,649 KB:
Download: https://www.python.org/ftp/python/doc/3.11.4/python-3.11.4-docs-html.tar.bz2
MD5 sum: cdce7b1189bcf52947f3b434ab04d7e2

• Readline (8.2) - 2,973 KB:
Home page: https://tiswww.case.edu/php/chet/readline/rltop.html
Download: https://ftp.gnu.org/gnu/readline/readline-8.2.tar.gz
MD5 sum: 4aa1b31be779e6b84f9a96cb66bc50f6

27

https://www.gnu.org/software/ncurses/
https://invisible-mirror.net/archives/ncurses/ncurses-6.4.tar.gz
https://ninja-build.org/
https://github.com/ninja-build/ninja/archive/v1.11.1/ninja-1.11.1.tar.gz
https://www.openssl.org/
https://www.openssl.org/source/openssl-3.1.2.tar.gz
https://savannah.gnu.org/projects/patch/
https://ftp.gnu.org/gnu/patch/patch-2.7.6.tar.xz
https://www.perl.org/
https://www.cpan.org/src/5.0/perl-5.38.0.tar.xz
http://pkgconf.org/
https://distfiles.ariadne.space/pkgconf/pkgconf-2.0.1.tar.xz
https://sourceforge.net/projects/procps-ng
https://sourceforge.net/projects/procps-ng/files/Production/procps-ng-4.0.3.tar.xz
https://gitlab.com/psmisc/psmisc
https://sourceforge.net/projects/psmisc/files/psmisc/psmisc-23.6.tar.xz
https://www.python.org/
https://www.python.org/ftp/python/3.11.4/Python-3.11.4.tar.xz
https://www.python.org/ftp/python/doc/3.11.4/python-3.11.4-docs-html.tar.bz2
https://tiswww.case.edu/php/chet/readline/rltop.html
https://ftp.gnu.org/gnu/readline/readline-8.2.tar.gz

Linux From Scratch - Version 12.0-systemd

• Sed (4.9) - 1,365 KB:
Home page: https://www.gnu.org/software/sed/
Download: https://ftp.gnu.org/gnu/sed/sed-4.9.tar.xz
MD5 sum: 6aac9b2dbafcd5b7a67a8a9bcb8036c3

• Shadow (4.13) - 1,722 KB:
Home page: https://shadow-maint.github.io/shadow/
Download: https://github.com/shadow-maint/shadow/releases/download/4.13/shadow-4.13.tar.xz
MD5 sum: b1ab01b5462ddcf43588374d57bec123

• Systemd (254) - 13,985 KB:
Home page: https://www.freedesktop.org/wiki/Software/systemd/
Download: https://github.com/systemd/systemd/archive/v254/systemd-254.tar.gz
MD5 sum: 0d266e5361dc72097b6c18cfde1c0001

• Systemd Man Pages(254) - 626 KB:
Home page: https://www.freedesktop.org/wiki/Software/systemd/
Download: https://anduin.linuxfromscratch.org/LFS/systemd-man-pages-254.tar.xz
MD5 sum: fc32faeac581e1890ca27fcea3858410

Note
The Linux From Scratch team generates its own tarball of the man pages using the systemd source. This is
done in order to avoid unnecessary dependencies.

• Tar (1.35) - 2,263 KB:
Home page: https://www.gnu.org/software/tar/
Download: https://ftp.gnu.org/gnu/tar/tar-1.35.tar.xz
MD5 sum: a2d8042658cfd8ea939e6d911eaf4152

• Tcl (8.6.13) - 10,581 KB:
Home page: http://tcl.sourceforge.net/
Download: https://downloads.sourceforge.net/tcl/tcl8.6.13-src.tar.gz
MD5 sum: 0e4358aade2f5db8a8b6f2f6d9481ec2

• Tcl Documentation (8.6.13) - 1,165 KB:
Download: https://downloads.sourceforge.net/tcl/tcl8.6.13-html.tar.gz
MD5 sum: 4452f2f6d557f5598cca17b786d6eb68

• Texinfo (7.0.3) - 4,776 KB:
Home page: https://www.gnu.org/software/texinfo/
Download: https://ftp.gnu.org/gnu/texinfo/texinfo-7.0.3.tar.xz
MD5 sum: 37bf94fd255729a14d4ea3dda119f81a

• Time Zone Data (2023c) - 436 KB:
Home page: https://www.iana.org/time-zones
Download: https://www.iana.org/time-zones/repository/releases/tzdata2023c.tar.gz
MD5 sum: 5aa672bf129b44dd915f8232de38e49a

• Util-linux (2.39.1) - 8,156 KB:
Home page: https://git.kernel.org/pub/scm/utils/util-linux/util-linux.git/
Download: https://www.kernel.org/pub/linux/utils/util-linux/v2.39/util-linux-2.39.1.tar.xz
MD5 sum: c542cd7c0726254e4b3006a9b428201a

28

https://www.gnu.org/software/sed/
https://ftp.gnu.org/gnu/sed/sed-4.9.tar.xz
https://shadow-maint.github.io/shadow/
https://github.com/shadow-maint/shadow/releases/download/4.13/shadow-4.13.tar.xz
https://www.freedesktop.org/wiki/Software/systemd/
https://github.com/systemd/systemd/archive/v254/systemd-254.tar.gz
https://www.freedesktop.org/wiki/Software/systemd/
https://anduin.linuxfromscratch.org/LFS/systemd-man-pages-254.tar.xz
https://www.gnu.org/software/tar/
https://ftp.gnu.org/gnu/tar/tar-1.35.tar.xz
http://tcl.sourceforge.net/
https://downloads.sourceforge.net/tcl/tcl8.6.13-src.tar.gz
https://downloads.sourceforge.net/tcl/tcl8.6.13-html.tar.gz
https://www.gnu.org/software/texinfo/
https://ftp.gnu.org/gnu/texinfo/texinfo-7.0.3.tar.xz
https://www.iana.org/time-zones
https://www.iana.org/time-zones/repository/releases/tzdata2023c.tar.gz
https://git.kernel.org/pub/scm/utils/util-linux/util-linux.git/
https://www.kernel.org/pub/linux/utils/util-linux/v2.39/util-linux-2.39.1.tar.xz

Linux From Scratch - Version 12.0-systemd

• Vim (9.0.1677) - 16,670 KB:
Home page: https://www.vim.org
Download: https://anduin.linuxfromscratch.org/LFS/vim-9.0.1677.tar.gz
MD5 sum: 65e6b09ef0628a2d8eba79f1d1d5a564

Note
The version of vim changes daily. To get the latest version, go to https://github.com/vim/vim/tags.

• Wheel (0.41.1) - 96 KB:
Home page: https://pypi.org/project/wheel/
Download: https://pypi.org/packages/source/w/wheel/wheel-0.41.1.tar.gz
MD5 sum: 181cb3f4d8ed340c904a0e1c416d341d

• XML::Parser (2.46) - 249 KB:
Home page: https://github.com/chorny/XML-Parser
Download: https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-2.46.tar.gz
MD5 sum: 80bb18a8e6240fcf7ec2f7b57601c170

• Xz Utils (5.4.4) - 1,623 KB:
Home page: https://tukaani.org/xz
Download: https://tukaani.org/xz/xz-5.4.4.tar.xz
MD5 sum: d83d6f64a64f88759e312b8a38c3add6

• Zlib (1.2.13) - 1267 KB:
Home page: https://www.zlib.net/
Download: https://anduin.linuxfromscratch.org/LFS/zlib-1.2.13.tar.xz
MD5 sum: 7d9fc1d78ae2fa3e84fe98b77d006c63

• Zstd (1.5.5) - 2,314 KB:
Home page: https://facebook.github.io/zstd/
Download: https://github.com/facebook/zstd/releases/download/v1.5.5/zstd-1.5.5.tar.gz
MD5 sum: 63251602329a106220e0a5ad26ba656f

Total size of these packages: about 494 MB

3.3. Needed Patches
In addition to the packages, several patches are also required. These patches correct any mistakes in the packages that
should be fixed by the maintainer. The patches also make small modifications to make the packages easier to work
with. The following patches will be needed to build an LFS system:

• Bzip2 Documentation Patch - 1.6 KB:
Download: https://www.linuxfromscratch.org/patches/lfs/12.0/bzip2-1.0.8-install_docs-1.patch
MD5 sum: 6a5ac7e89b791aae556de0f745916f7f

• Coreutils Internationalization Fixes Patch - 166 KB:
Download: https://www.linuxfromscratch.org/patches/lfs/12.0/coreutils-9.3-i18n-1.patch
MD5 sum: 3c6340b3ddd62f4acdf8d3caa6fad6b0

• Glibc Memalign Patch - 20 KB:
Download: https://www.linuxfromscratch.org/patches/lfs/12.0/glibc-2.38-memalign_fix-1.patch
MD5 sum: 2c3552bded42a83ad6a7087c5fbf3857

29

https://www.vim.org
https://anduin.linuxfromscratch.org/LFS/vim-9.0.1677.tar.gz
https://github.com/vim/vim/releases
https://pypi.org/project/wheel/
https://pypi.org/packages/source/w/wheel/wheel-0.41.1.tar.gz
https://github.com/chorny/XML-Parser
https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-2.46.tar.gz
https://tukaani.org/xz
https://tukaani.org/xz/xz-5.4.4.tar.xz
https://www.zlib.net/
https://anduin.linuxfromscratch.org/LFS/zlib-1.2.13.tar.xz
https://facebook.github.io/zstd/
https://github.com/facebook/zstd/releases/download/v1.5.5/zstd-1.5.5.tar.gz
https://www.linuxfromscratch.org/patches/lfs/12.0/bzip2-1.0.8-install_docs-1.patch
https://www.linuxfromscratch.org/patches/lfs/12.0/coreutils-9.3-i18n-1.patch
https://www.linuxfromscratch.org/patches/lfs/12.0/glibc-2.38-memalign_fix-1.patch

Linux From Scratch - Version 12.0-systemd

• Glibc FHS Patch - 2.8 KB:
Download: https://www.linuxfromscratch.org/patches/lfs/12.0/glibc-2.38-fhs-1.patch
MD5 sum: 9a5997c3452909b1769918c759eff8a2

• GRUB Upstream Fixes Patch - 8 KB:
Download: https://www.linuxfromscratch.org/patches/lfs/12.0/grub-2.06-upstream_fixes-1.patch
MD5 sum: da388905710bb4cbfbc7bd7346ff9174

• Kbd Backspace/Delete Fix Patch - 12 KB:
Download: https://www.linuxfromscratch.org/patches/lfs/12.0/kbd-2.6.1-backspace-1.patch
MD5 sum: f75cca16a38da6caa7d52151f7136895

• Readline Upstream Fix Patch - 1.3 KB:
Download: https://www.linuxfromscratch.org/patches/lfs/12.0/readline-8.2-upstream_fix-1.patch
MD5 sum: dd1764b84cfca6b677f44978218a75da

Total size of these patches: about 211.7 KB

In addition to the above required patches, there exist a number of optional patches created by the LFS community. These
optional patches solve minor problems or enable functionality that is not enabled by default. Feel free to peruse the
patches database located at https://www.linuxfromscratch.org/patches/downloads/ and acquire any additional patches
to suit your system needs.

30

https://www.linuxfromscratch.org/patches/lfs/12.0/glibc-2.38-fhs-1.patch
https://www.linuxfromscratch.org/patches/lfs/12.0/grub-2.06-upstream_fixes-1.patch
https://www.linuxfromscratch.org/patches/lfs/12.0/kbd-2.6.1-backspace-1.patch
https://www.linuxfromscratch.org/patches/lfs/12.0/readline-8.2-upstream_fix-1.patch
https://www.linuxfromscratch.org/patches/downloads/

Linux From Scratch - Version 12.0-systemd

Chapter 4. Final Preparations

4.1. Introduction
In this chapter, we will perform a few additional tasks to prepare for building the temporary system. We will create a set
of directories in $LFS (in which we will install the temporary tools), add an unprivileged user, and create an appropriate
build environment for that user. We will also explain the units of time (“SBUs”) we use to measure how long it takes
to build LFS packages, and provide some information about package test suites.

4.2. Creating a Limited Directory Layout in the LFS Filesystem
In this section, we begin populating the LFS filesystem with the pieces that will constitute the final Linux system.
The first step is to create a limited directory hierarchy, so that the programs compiled in Chapter 6 (as well as glibc
and libstdc++ in Chapter 5) can be installed in their final location. We do this so those temporary programs will be
overwritten when the final versions are built in Chapter 8.

Create the required directory layout by issuing the following commands as root:

mkdir -pv $LFS/{etc,var} $LFS/usr/{bin,lib,sbin}

for i in bin lib sbin; do
 ln -sv usr/$i $LFS/$i
done

case $(uname -m) in
 x86_64) mkdir -pv $LFS/lib64 ;;
esac

Programs in Chapter 6 will be compiled with a cross-compiler (more details can be found in section Toolchain Technical
Notes). This cross-compiler will be installed in a special directory, to separate it from the other programs. Still acting
as root, create that directory with this command:

mkdir -pv $LFS/tools

Note

The LFS editors have deliberately decided not to use a /usr/lib64 directory. Several steps are taken to be
sure the toolchain will not use it. If for any reason this directory appears (either because you made an error
in following the instructions, or because you installed a binary package that created it after finishing LFS), it
may break your system. You should always be sure this directory does not exist.

4.3. Adding the LFS User
When logged in as user root, making a single mistake can damage or destroy a system. Therefore, the packages in the
next two chapters are built as an unprivileged user. You could use your own user name, but to make it easier to set up
a clean working environment, we will create a new user called lfs as a member of a new group (also named lfs) and
run commands as lfs during the installation process. As root, issue the following commands to add the new user:

groupadd lfs
useradd -s /bin/bash -g lfs -m -k /dev/null lfs

This is what the command line options mean:

-s /bin/bash

This makes bash the default shell for user lfs.

31

Linux From Scratch - Version 12.0-systemd

-g lfs

This option adds user lfs to group lfs.

-m

This creates a home directory for lfs.

-k /dev/null

This parameter prevents possible copying of files from a skeleton directory (the default is /etc/skel) by changing
the input location to the special null device.

lfs

This is the name of the new user.

If you want to log in as lfs or switch to lfs from a non-root user (as opposed to switching to user lfs when logged in
as root, which does not require the lfs user to have a password), you need to set a password for lfs. Issue the following
command as the root user to set the password:

passwd lfs

Grant lfs full access to all the directories under $LFS by making lfs the owner:

chown -v lfs $LFS/{usr{,/*},lib,var,etc,bin,sbin,tools}
case $(uname -m) in
 x86_64) chown -v lfs $LFS/lib64 ;;
esac

Note

In some host systems, the following su command does not complete properly and suspends the login for the
lfs user to the background. If the prompt "lfs:~$" does not appear immediately, entering the fg command
will fix the issue.

Next, start a shell running as user lfs. This can be done by logging in as lfs on a virtual console, or with the following
substitute/switch user command:

su - lfs

The “-” instructs su to start a login shell as opposed to a non-login shell. The difference between these two types of
shells is described in detail in bash(1) and info bash.

4.4. Setting Up the Environment
Set up a good working environment by creating two new startup files for the bash shell. While logged in as user lfs,
issue the following command to create a new .bash_profile:

cat > ~/.bash_profile << "EOF"
exec env -i HOME=$HOME TERM=$TERM PS1='\u:\w\$ ' /bin/bash
EOF

When logged on as user lfs, or when switched to the lfs user using an su command with the “-” option, the initial shell
is a login shell which reads the /etc/profile of the host (probably containing some settings and environment variables)
and then .bash_profile. The exec env -i.../bin/bash command in the .bash_profile file replaces the running shell with
a new one with a completely empty environment, except for the HOME, TERM, and PS1 variables. This ensures that no
unwanted and potentially hazardous environment variables from the host system leak into the build environment.

32

Linux From Scratch - Version 12.0-systemd

The new instance of the shell is a non-login shell, which does not read, and execute, the contents of the /etc/profile
or .bash_profile files, but rather reads, and executes, the .bashrc file instead. Create the .bashrc file now:

cat > ~/.bashrc << "EOF"
set +h
umask 022
LFS=/mnt/lfs
LC_ALL=POSIX
LFS_TGT=$(uname -m)-lfs-linux-gnu
PATH=/usr/bin
if [! -L /bin]; then PATH=/bin:$PATH; fi
PATH=$LFS/tools/bin:$PATH
CONFIG_SITE=$LFS/usr/share/config.site
export LFS LC_ALL LFS_TGT PATH CONFIG_SITE
EOF

The meaning of the settings in .bashrc

set +h

The set +h command turns off bash's hash function. Hashing is ordinarily a useful feature—bash uses a hash
table to remember the full path to executable files to avoid searching the PATH time and again to find the same
executable. However, the new tools should be used as soon as they are installed. Switching off the hash function
forces the shell to search the PATH whenever a program is to be run. As such, the shell will find the newly compiled
tools in $LFS/tools/bin as soon as they are available without remembering a previous version of the same program
provided by the host distro, in /usr/bin or /bin.

umask 022

Setting the user file-creation mask (umask) to 022 ensures that newly created files and directories are only writable
by their owner, but are readable and executable by anyone (assuming default modes are used by the open(2) system
call, new files will end up with permission mode 644 and directories with mode 755).

LFS=/mnt/lfs

The LFS variable should be set to the chosen mount point.

LC_ALL=POSIX

The LC_ALL variable controls the localization of certain programs, making their messages follow the conventions
of a specified country. Setting LC_ALL to “POSIX” or “C” (the two are equivalent) ensures that everything will
work as expected in the cross-compilation environment.

LFS_TGT=$(uname -m)-lfs-linux-gnu

The LFS_TGT variable sets a non-default, but compatible machine description for use when building our cross-
compiler and linker and when cross-compiling our temporary toolchain. More information is provided by
Toolchain Technical Notes.

PATH=/usr/bin

Many modern Linux distributions have merged /bin and /usr/bin. When this is the case, the standard PATH variable
should be set to /usr/bin/ for the Chapter 6 environment. When this is not the case, the following line adds /
bin to the path.

if [! -L /bin]; then PATH=/bin:$PATH; fi

If /bin is not a symbolic link, it must be added to the PATH variable.

PATH=$LFS/tools/bin:$PATH

By putting $LFS/tools/bin ahead of the standard PATH, the cross-compiler installed at the beginning of Chapter 5
is picked up by the shell immediately after its installation. This, combined with turning off hashing, limits the risk
that the compiler from the host is used instead of the cross-compiler.

33

Linux From Scratch - Version 12.0-systemd

CONFIG_SITE=$LFS/usr/share/config.site

In Chapter 5 and Chapter 6, if this variable is not set, configure scripts may attempt to load configuration items
specific to some distributions from /usr/share/config.site on the host system. Override it to prevent potential
contamination from the host.

export ...

While the preceding commands have set some variables, in order to make them visible within any sub-shells, we
export them.

Important

Several commercial distributions add an undocumented instantiation of /etc/bash.bashrc to the initialization
of bash. This file has the potential to modify the lfs user's environment in ways that can affect the building
of critical LFS packages. To make sure the lfs user's environment is clean, check for the presence of /etc/
bash.bashrc and, if present, move it out of the way. As the root user, run:

[! -e /etc/bash.bashrc] || mv -v /etc/bash.bashrc /etc/bash.bashrc.NOUSE

When the lfs user is no longer needed (at the beginning of Chapter 7), you may safely restore /etc/bash.
bashrc (if desired).

Note that the LFS Bash package we will build in Section 8.35, “Bash-5.2.15” is not configured to load or
execute /etc/bash.bashrc, so this file is useless on a completed LFS system.

Finally, to ensure the environment is fully prepared for building the temporary tools, force the bash shell to read the
new user profile:

source ~/.bash_profile

4.5. About SBUs
Many people would like to know beforehand approximately how long it takes to compile and install each package.
Because Linux From Scratch can be built on many different systems, it is impossible to provide absolute time estimates.
The biggest package (gcc) will take approximately 5 minutes on the fastest systems, but could take days on slower
systems! Instead of providing actual times, the Standard Build Unit (SBU) measure will be used instead.

The SBU measure works as follows. The first package to be compiled is binutils in Chapter 5. The time it takes to
compile using one core is what we will refer to as the Standard Build Unit or SBU. All other compile times will be
expressed in terms of this unit of time.

For example, consider a package whose compilation time is 4.5 SBUs. This means that if your system took 10 minutes
to compile and install the first pass of binutils, it will take approximately 45 minutes to build the example package.
Fortunately, most build times are shorter than one SBU.

SBUs are not entirely accurate because they depend on many factors, including the host system's version of GCC. They
are provided here to give an estimate of how long it might take to install a package, but the numbers can vary by as
much as dozens of minutes in some cases.

34

Linux From Scratch - Version 12.0-systemd

Note

For many modern systems with multiple processors (or cores) the compilation time for a package can be
reduced by performing a "parallel make" by either setting an environment variable or telling the make
program how many processors are available. For instance, an Intel i5-6500 CPU can support four simultaneous
processes with:

export MAKEFLAGS='-j4'

or by building with:

make -j4

When multiple processors are used in this way, the SBU units in the book will vary even more than they
normally would. In some cases, the make step will simply fail. Analyzing the output of the build process will
also be more difficult because the lines from different processes will be interleaved. If you run into a problem
with a build step, revert to a single processor build to properly analyze the error messages.

The times presented here are based upon using four cores (-j4). The times in Chapter 8 also include the time
to run the regression tests for the package unless specified otherwise.

4.6. About the Test Suites
Most packages provide a test suite. Running the test suite for a newly built package is a good idea because it can provide
a “sanity check” indicating that everything compiled correctly. A test suite that passes its set of checks usually proves
that the package is functioning as the developer intended. It does not, however, guarantee that the package is totally
bug free.

Some test suites are more important than others. For example, the test suites for the core toolchain packages—GCC,
binutils, and glibc—are of the utmost importance due to their central role in a properly functioning system. The test
suites for GCC and glibc can take a very long time to complete, especially on slower hardware, but are strongly
recommended.

Note

Running the test suites in Chapter 5 and Chapter 6 is pointless; since the test programs are compiled with a
cross-compiler, they probably can't run on the build host.

A common issue with running the test suites for binutils and GCC is running out of pseudo terminals (PTYs). This can
result in a large number of failing tests. This may happen for several reasons, but the most likely cause is that the host
system does not have the devpts file system set up correctly. This issue is discussed in greater detail at https://www.
linuxfromscratch.org/lfs/faq.html#no-ptys.

Sometimes package test suites will fail for reasons which the developers are aware of and have deemed non-critical.
Consult the logs located at https://www.linuxfromscratch.org/lfs/build-logs/12.0/ to verify whether or not these failures
are expected. This site is valid for all test suites throughout this book.

35

https://www.linuxfromscratch.org/lfs/faq.html#no-ptys
https://www.linuxfromscratch.org/lfs/faq.html#no-ptys
https://www.linuxfromscratch.org/lfs/build-logs/12.0/

Linux From Scratch - Version 12.0-systemd

Part III. Building the LFS Cross
Toolchain and Temporary Tools

Linux From Scratch - Version 12.0-systemd

Important Preliminary Material
Introduction

This part is divided into three stages: first, building a cross compiler and its associated libraries; second, using this
cross toolchain to build several utilities in a way that isolates them from the host distribution; and third, entering the
chroot environment (which further improves host isolation) and constructing the remaining tools needed to build the
final system.

Important

This is where the real work of building a new system begins. Be very careful to follow the instructions
exactly as the book shows them. You should try to understand what each command does, and no matter how
eager you are to finish your build, you should refrain from blindly typing the commands as shown. Read
the documentation when there is something you do not understand. Also, keep track of your typing and of
the output of commands, by using the tee utility to send the terminal output to a file. This makes debugging
easier if something goes wrong.

The next section is a technical introduction to the build process, while the following one presents very important
general instructions.

Toolchain Technical Notes
This section explains some of the rationale and technical details behind the overall build method. Don't try to
immediately understand everything in this section. Most of this information will be clearer after performing an actual
build. Come back and re-read this chapter at any time during the build process.

The overall goal of Chapter 5 and Chapter 6 is to produce a temporary area containing a set of tools that are known to
be good, and that are isolated from the host system. By using the chroot command, the compilations in the remaining
chapters will be isolated within that environment, ensuring a clean, trouble-free build of the target LFS system. The
build process has been designed to minimize the risks for new readers, and to provide the most educational value at
the same time.

This build process is based on cross-compilation. Cross-compilation is normally used to build a compiler and its
associated toolchain for a machine different from the one that is used for the build. This is not strictly necessary for
LFS, since the machine where the new system will run is the same as the one used for the build. But cross-compilation
has one great advantage: anything that is cross-compiled cannot depend on the host environment.

About Cross-Compilation

Note

The LFS book is not (and does not contain) a general tutorial to build a cross- (or native) toolchain. Don't
use the commands in the book for a cross-toolchain for some purpose other than building LFS, unless you
really understand what you are doing.

Cross-compilation involves some concepts that deserve a section of their own. Although this section may be omitted
on a first reading, coming back to it later will help you gain a fuller understanding of the process.

Let us first define some terms used in this context.

xxxvii

Linux From Scratch - Version 12.0-systemd

The build
is the machine where we build programs. Note that this machine is also referred to as the “host”.

The host
is the machine/system where the built programs will run. Note that this use of “host” is not the same as in other
sections.

The target
is only used for compilers. It is the machine the compiler produces code for. It may be different from both the
build and the host.

As an example, let us imagine the following scenario (sometimes referred to as “Canadian Cross”). We have a compiler
on a slow machine only, let's call it machine A, and the compiler ccA. We also have a fast machine (B), but no compiler
for (B), and we want to produce code for a third, slow machine (C). We will build a compiler for machine C in three
stages.

Stage Build Host Target Action

1 A A B Build
cross-
compiler
cc1 using
ccA on
machine
A.

2 A B C Build
cross-
compiler
cc2 using
cc1 on
machine
A.

3 B C C Build
compiler
ccC using
cc2 on
machine
B.

Then, all the programs needed by machine C can be compiled using cc2 on the fast machine B. Note that unless B can
run programs produced for C, there is no way to test the newly built programs until machine C itself is running. For
example, to run a test suite on ccC, we may want to add a fourth stage:

Stage Build Host Target Action

4 C C C Rebuild
and test
ccC using
ccC on
machine
C.

xxxviii

Linux From Scratch - Version 12.0-systemd

In the example above, only cc1 and cc2 are cross-compilers, that is, they produce code for a machine different from the
one they are run on. The other compilers ccA and ccC produce code for the machine they are run on. Such compilers
are called native compilers.

Implementation of Cross-Compilation for LFS

Note

All the cross-compiled packages in this book use an autoconf-based building system. The autoconf-based
building system accepts system types in the form cpu-vendor-kernel-os, referred to as the system triplet. Since
the vendor field is often irrelevant, autoconf lets you omit it.

An astute reader may wonder why a “triplet” refers to a four component name. The kernel field and the
os field began as a single “system” field. Such a three-field form is still valid today for some systems, for
example, x86_64-unknown-freebsd. But two systems can share the same kernel and still be too different to use
the same triplet to describe them. For example, Android running on a mobile phone is completely different
from Ubuntu running on an ARM64 server, even though they are both running on the same type of CPU
(ARM64) and using the same kernel (Linux).

Without an emulation layer, you cannot run an executable for a server on a mobile phone or vice versa. So
the “system” field has been divided into kernel and os fields, to designate these systems unambiguously. In
our example, the Android system is designated aarch64-unknown-linux-android, and the Ubuntu system is
designated aarch64-unknown-linux-gnu.

The word “triplet” remains embedded in the lexicon. A simple way to determine your system triplet is to run
the config.guess script that comes with the source for many packages. Unpack the binutils sources, run the
script ./config.guess, and note the output. For example, for a 32-bit Intel processor the output will be i686-
pc-linux-gnu. On a 64-bit system it will be x86_64-pc-linux-gnu. On most Linux systems the even simpler
gcc -dumpmachine command will give you similar information.

You should also be aware of the name of the platform's dynamic linker, often referred to as the dynamic loader
(not to be confused with the standard linker ld that is part of binutils). The dynamic linker provided by package
glibc finds and loads the shared libraries needed by a program, prepares the program to run, and then runs it.
The name of the dynamic linker for a 32-bit Intel machine is ld-linux.so.2; it's ld-linux-x86-64.so.2 on 64-
bit systems. A sure-fire way to determine the name of the dynamic linker is to inspect a random binary from
the host system by running: readelf -l <name of binary> | grep interpreter and noting the output. The
authoritative reference covering all platforms is in the shlib-versions file in the root of the glibc source tree.

In order to fake a cross-compilation in LFS, the name of the host triplet is slightly adjusted by changing the "vendor"
field in the LFS_TGT variable so it says "lfs". We also use the --with-sysroot option when building the cross-linker and
cross-compiler, to tell them where to find the needed host files. This ensures that none of the other programs built in
Chapter 6 can link to libraries on the build machine. Only two stages are mandatory, plus one more for tests.

Stage Build Host Target Action

1 pc pc lfs Build
cross-
compiler
cc1 using
cc-pc on
pc.

xxxix

Linux From Scratch - Version 12.0-systemd

Stage Build Host Target Action

2 pc lfs lfs Build
compiler
cc-lfs
using cc1
on pc.

3 lfs lfs lfs Rebuild
and test
cc-lfs
using cc-
lfs on lfs.

In the preceding table, “on pc” means the commands are run on a machine using the already installed distribution. “On
lfs” means the commands are run in a chrooted environment.

This is not yet the end of the story. The C language is not merely a compiler; it also defines a standard library. In this
book, the GNU C library, named glibc, is used (there is an alternative, "musl"). This library must be compiled for the
LFS machine; that is, using the cross-compiler cc1. But the compiler itself uses an internal library providing complex
subroutines for functions not available in the assembler instruction set. This internal library is named libgcc, and it must
be linked to the glibc library to be fully functional. Furthermore, the standard library for C++ (libstdc++) must also be
linked with glibc. The solution to this chicken and egg problem is first to build a degraded cc1-based libgcc, lacking
some functionalities such as threads and exception handling, and then to build glibc using this degraded compiler (glibc
itself is not degraded), and also to build libstdc++. This last library will lack some of the functionality of libgcc.

The upshot of the preceding paragraph is that cc1 is unable to build a fully functional libstdc++ with the degraded
libgcc, but cc1 is the only compiler available for building the C/C++ libraries during stage 2. There are two reasons we
don't immediately use the compiler built in stage 2, cc-lfs, to build those libraries.

• Generally speaking, cc-lfs cannot run on pc (the host system). Even though the triplets for pc and lfs are
compatible with each other, an executable for lfs must depend on glibc-2.38; the host distro may utilize either a
different implementation of libc (for example, musl), or a previous release of glibc (for example, glibc-2.13).

• Even if cc-lfs can run on pc, using it on pc would create a risk of linking to the pc libraries, since cc-lfs is a native
compiler.

So when we build gcc stage 2, we instruct the building system to rebuild libgcc and libstdc++ with cc1, but we link
libstdc++ to the newly rebuilt libgcc instead of the old, degraded build. This makes the rebuilt libstdc++ fully functional.

In Chapter 8 (or “stage 3”), all the packages needed for the LFS system are built. Even if a package has already been
installed into the LFS system in a previous chapter, we still rebuild the package. The main reason for rebuilding these
packages is to make them stable: if we reinstall an LFS package on a completed LFS system, the reinstalled content of
the package should be the same as the content of the same package when first installed in Chapter 8. The temporary
packages installed in Chapter 6 or Chapter 7 cannot satisfy this requirement, because some of them are built without
optional dependencies, and autoconf cannot perform some feature checks in Chapter 6 because of cross-compilation,
causing the temporary packages to lack optional features, or use suboptimal code routines. Additionally, a minor reason
for rebuilding the packages is to run the test suites.

Other Procedural Details
The cross-compiler will be installed in a separate $LFS/tools directory, since it will not be part of the final system.

xl

Linux From Scratch - Version 12.0-systemd

Binutils is installed first because the configure runs of both gcc and glibc perform various feature tests on the assembler
and linker to determine which software features to enable or disable. This is more important than one might realize at
first. An incorrectly configured gcc or glibc can result in a subtly broken toolchain, where the impact of such breakage
might not show up until near the end of the build of an entire distribution. A test suite failure will usually highlight this
error before too much additional work is performed.

Binutils installs its assembler and linker in two locations, $LFS/tools/bin and $LFS/tools/$LFS_TGT/bin. The tools in
one location are hard linked to the other. An important facet of the linker is its library search order. Detailed information
can be obtained from ld by passing it the --verbose flag. For example, $LFS_TGT-ld --verbose | grep SEARCH will
illustrate the current search paths and their order. (Note that this example can be run as shown only while logged in as
user lfs. If you come back to this page later, replace $LFS_TGT-ld with ld).

The next package installed is gcc. An example of what can be seen during its run of configure is:

checking what assembler to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/as
checking what linker to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/ld

This is important for the reasons mentioned above. It also demonstrates that gcc's configure script does not search the
PATH directories to find which tools to use. However, during the actual operation of gcc itself, the same search paths
are not necessarily used. To find out which standard linker gcc will use, run: $LFS_TGT-gcc -print-prog-name=ld.
(Again, remove the $LFS_TGT- prefix if coming back to this later.)

Detailed information can be obtained from gcc by passing it the -v command line option while compiling a program. For
example, $LFS_TGT-gcc -v example.c (or without $LFS_TGT- if coming back later) will show detailed information
about the preprocessor, compilation, and assembly stages, including gcc's search paths for included headers and their
order.

Next up: sanitized Linux API headers. These allow the standard C library (glibc) to interface with features that the
Linux kernel will provide.

Next comes glibc. The most important considerations for building glibc are the compiler, binary tools, and kernel
headers. The compiler is generally not an issue since glibc will always use the compiler relating to the --host parameter
passed to its configure script; e.g., in our case, the compiler will be $LFS_TGT-gcc. The binary tools and kernel headers
can be a bit more complicated. Therefore, we take no risks and use the available configure switches to enforce the
correct selections. After the run of configure, check the contents of the config.make file in the build directory for all
important details. Note the use of CC="$LFS_TGT-gcc" (with $LFS_TGT expanded) to control which binary tools are used
and the use of the -nostdinc and -isystem flags to control the compiler's include search path. These items highlight
an important aspect of the glibc package—it is very self-sufficient in terms of its build machinery, and generally does
not rely on toolchain defaults.

As mentioned above, the standard C++ library is compiled next, followed in Chapter 6 by other programs that must
be cross-compiled to break circular dependencies at build time. The install step of all those packages uses the DESTDIR
variable to force installation in the LFS filesystem.

At the end of Chapter 6 the native LFS compiler is installed. First binutils-pass2 is built, in the same DESTDIR directory as
the other programs, then the second pass of gcc is constructed, omitting some non-critical libraries. Due to some weird
logic in gcc's configure script, CC_FOR_TARGET ends up as cc when the host is the same as the target, but different from
the build system. This is why CC_FOR_TARGET=$LFS_TGT-gcc is declared explicitly as one of the configuration options.

Upon entering the chroot environment in Chapter 7, the temporary installations of programs needed for the proper
operation of the toolchain are performed. From this point onwards, the core toolchain is self-contained and self-hosted.
In Chapter 8, final versions of all the packages needed for a fully functional system are built, tested, and installed.

xli

Linux From Scratch - Version 12.0-systemd

General Compilation Instructions
Here are some things you should know about building each package:

• Several packages are patched before compilation, but only when the patch is needed to circumvent a problem.
A patch is often needed in both the current and the following chapters, but sometimes, when the same package
is built more than once, the patch is not needed right away. Therefore, do not be concerned if instructions for a
downloaded patch seem to be missing. Warning messages about offset or fuzz may also be encountered when
applying a patch. Do not worry about these warnings; the patch was still successfully applied.

• During the compilation of most packages, some warnings will scroll by on the screen. These are normal and can
safely be ignored. These warnings are usually about deprecated, but not invalid, use of the C or C++ syntax. C
standards change fairly often, and some packages have not yet been updated. This is not a serious problem, but it
does cause the warnings to appear.

• Check one last time that the LFS environment variable is set up properly:

echo $LFS

Make sure the output shows the path to the LFS partition's mount point, which is /mnt/lfs, using our example.

• Finally, two important items must be emphasized:

Important

The build instructions assume that the Host System Requirements, including symbolic links, have been
set properly:

• bash is the shell in use.

• sh is a symbolic link to bash.

• /usr/bin/awk is a symbolic link to gawk.

• /usr/bin/yacc is a symbolic link to bison, or to a small script that executes bison.

Important

Here is a synopsis of the build process.
1. Place all the sources and patches in a directory that will be accessible from the chroot environment,

such as /mnt/lfs/sources/.
2. Change to the /mnt/lfs/sources/ directory.
3. For each package:

a. Using the tar program, extract the package to be built. In Chapter 5 and Chapter 6, ensure you are
the lfs user when extracting the package.

Do not use any method except the tar command to extract the source code. Notably, using the cp -
R command to copy the source code tree somewhere else can destroy links and timestamps in the
source tree, and cause the build to fail.

b. Change to the directory created when the package was extracted.
c. Follow the instructions for building the package.
d. Change back to the sources directory when the build is complete.
e. Delete the extracted source directory unless instructed otherwise.

xlii

Linux From Scratch - Version 12.0-systemd

Chapter 5. Compiling a Cross-Toolchain

5.1. Introduction
This chapter shows how to build a cross-compiler and its associated tools. Although here cross-compilation is faked,
the principles are the same as for a real cross-toolchain.

The programs compiled in this chapter will be installed under the $LFS/tools directory to keep them separate from the
files installed in the following chapters. The libraries, on the other hand, are installed into their final place, since they
pertain to the system we want to build.

43

Linux From Scratch - Version 12.0-systemd

5.2. Binutils-2.41 - Pass 1
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1 SBU
Required disk space: 647 MB

5.2.1. Installation of Cross Binutils

Note

Go back and re-read the notes in the section titled General Compilation Instructions. Understanding the notes
labeled important can save you a lot of problems later.

It is important that Binutils be the first package compiled because both Glibc and GCC perform various tests on the
available linker and assembler to determine which of their own features to enable.

The Binutils documentation recommends building Binutils in a dedicated build directory:

mkdir -v build
cd build

Note

In order for the SBU values listed in the rest of the book to be of any use, measure the time it takes to build
this package from the configuration, up to and including the first install. To achieve this easily, wrap the
commands in a time command like this: time { ../configure ... && make && make install; }.

Now prepare Binutils for compilation:

../configure --prefix=$LFS/tools \
 --with-sysroot=$LFS \
 --target=$LFS_TGT \
 --disable-nls \
 --enable-gprofng=no \
 --disable-werror

The meaning of the configure options:

--prefix=$LFS/tools

This tells the configure script to prepare to install the Binutils programs in the $LFS/tools directory.

--with-sysroot=$LFS

For cross compilation, this tells the build system to look in $LFS for the target system libraries as needed.

--target=$LFS_TGT

Because the machine description in the LFS_TGT variable is slightly different than the value returned by the
config.guess script, this switch will tell the configure script to adjust binutil's build system for building a cross
linker.

--disable-nls

This disables internationalization as i18n is not needed for the temporary tools.

--enable-gprofng=no

This disables building gprofng which is not needed for the temporary tools.

44

Linux From Scratch - Version 12.0-systemd

--disable-werror

This prevents the build from stopping in the event that there are warnings from the host's compiler.

Continue with compiling the package:

make

Install the package:

make install

Details on this package are located in Section 8.18.2, “Contents of Binutils.”

45

Linux From Scratch - Version 12.0-systemd

5.3. GCC-13.2.0 - Pass 1
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 3.5 SBU

Required disk space: 4.2 GB

5.3.1. Installation of Cross GCC

GCC requires the GMP, MPFR and MPC packages. As these packages may not be included in your host distribution,
they will be built with GCC. Unpack each package into the GCC source directory and rename the resulting directories
so the GCC build procedures will automatically use them:

Note

There are frequent misunderstandings about this chapter. The procedures are the same as every other
chapter, as explained earlier (Package build instructions). First, extract the gcc-13.2.0 tarball from the sources
directory, and then change to the directory created. Only then should you proceed with the instructions below.

tar -xf ../mpfr-4.2.0.tar.xz
mv -v mpfr-4.2.0 mpfr
tar -xf ../gmp-6.3.0.tar.xz
mv -v gmp-6.3.0 gmp
tar -xf ../mpc-1.3.1.tar.gz
mv -v mpc-1.3.1 mpc

On x86_64 hosts, set the default directory name for 64-bit libraries to “lib”:

case $(uname -m) in
 x86_64)
 sed -e '/m64=/s/lib64/lib/' \
 -i.orig gcc/config/i386/t-linux64
 ;;
esac

The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd build

46

Linux From Scratch - Version 12.0-systemd

Prepare GCC for compilation:

../configure \
 --target=$LFS_TGT \
 --prefix=$LFS/tools \
 --with-glibc-version=2.38 \
 --with-sysroot=$LFS \
 --with-newlib \
 --without-headers \
 --enable-default-pie \
 --enable-default-ssp \
 --disable-nls \
 --disable-shared \
 --disable-multilib \
 --disable-threads \
 --disable-libatomic \
 --disable-libgomp \
 --disable-libquadmath \
 --disable-libssp \
 --disable-libvtv \
 --disable-libstdcxx \
 --enable-languages=c,c++

The meaning of the configure options:

--with-glibc-version=2.38

This option specifies the version of Glibc which will be used on the target. It is not relevant to the libc of the
host distro because everything compiled by pass1 GCC will run in the chroot environment, which is isolated from
libc of the host distro.

--with-newlib

Since a working C library is not yet available, this ensures that the inhibit_libc constant is defined when building
libgcc. This prevents the compiling of any code that requires libc support.

--without-headers

When creating a complete cross-compiler, GCC requires standard headers compatible with the target system. For
our purposes these headers will not be needed. This switch prevents GCC from looking for them.

--enable-default-pie and --enable-default-ssp

Those switches allow GCC to compile programs with some hardening security features (more information on those
in the note on PIE and SSP in chapter 8) by default. The are not strictly needed at this stage, since the compiler
will only produce temporary executables. But it is cleaner to have the temporary packages be as close as possible
to the final ones.

--disable-shared

This switch forces GCC to link its internal libraries statically. We need this because the shared libraries require
Glibc, which is not yet installed on the target system.

--disable-multilib

On x86_64, LFS does not support a multilib configuration. This switch is harmless for x86.

--disable-threads, --disable-libatomic, --disable-libgomp, --disable-libquadmath, --disable-libssp, --

disable-libvtv, --disable-libstdcxx

These switches disable support for threading, libatomic, libgomp, libquadmath, libssp, libvtv, and the C++ standard
library respectively. These features may fail to compile when building a cross-compiler and are not necessary for
the task of cross-compiling the temporary libc.

--enable-languages=c,c++

This option ensures that only the C and C++ compilers are built. These are the only languages needed now.

47

Linux From Scratch - Version 12.0-systemd

Compile GCC by running:

make

Install the package:

make install

This build of GCC has installed a couple of internal system headers. Normally one of them, limits.h, would in turn
include the corresponding system limits.h header, in this case, $LFS/usr/include/limits.h. However, at the time of
this build of GCC $LFS/usr/include/limits.h does not exist, so the internal header that has just been installed is a
partial, self-contained file and does not include the extended features of the system header. This is adequate for building
Glibc, but the full internal header will be needed later. Create a full version of the internal header using a command
that is identical to what the GCC build system does in normal circumstances:

Note

The command below shows an example of nested command substitution using two methods: backquotes and
a $() construct. It could be rewritten using the same method for both substitutions, but is shown this way to
demonstrate how they can be mixed. Generally the $() method is preferred.

cd ..
cat gcc/limitx.h gcc/glimits.h gcc/limity.h > \
 `dirname $($LFS_TGT-gcc -print-libgcc-file-name)`/include/limits.h

Details on this package are located in Section 8.27.2, “Contents of GCC.”

48

Linux From Scratch - Version 12.0-systemd

5.4. Linux-6.4.12 API Headers
The Linux API Headers (in linux-6.4.12.tar.xz) expose the kernel's API for use by Glibc.

Approximate build time: less than 0.1 SBU
Required disk space: 1.5 GB

5.4.1. Installation of Linux API Headers
The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in
LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.

Make sure there are no stale files embedded in the package:

make mrproper

Now extract the user-visible kernel headers from the source. The recommended make target “headers_install” cannot
be used, because it requires rsync, which may not be available. The headers are first placed in ./usr, then copied to
the needed location.

make headers
find usr/include -type f ! -name '*.h' -delete
cp -rv usr/include $LFS/usr

5.4.2. Contents of Linux API Headers
Installed headers: /usr/include/asm/*.h, /usr/include/asm-generic/*.h, /usr/include/drm/*.h, /usr/include/

linux/*.h, /usr/include/misc/*.h, /usr/include/mtd/*.h, /usr/include/rdma/*.h, /usr/
include/scsi/*.h, /usr/include/sound/*.h, /usr/include/video/*.h, and /usr/include/xen/*.h

Installed directories: /usr/include/asm, /usr/include/asm-generic, /usr/include/drm, /usr/include/linux, /usr/
include/misc, /usr/include/mtd, /usr/include/rdma, /usr/include/scsi, /usr/include/sound, /
usr/include/video, and /usr/include/xen

Short Descriptions

/usr/include/asm/*.h The Linux API ASM Headers

/usr/include/asm-generic/*.h The Linux API ASM Generic Headers

/usr/include/drm/*.h The Linux API DRM Headers

/usr/include/linux/*.h The Linux API Linux Headers

/usr/include/misc/*.h The Linux API Miscellaneous Headers

/usr/include/mtd/*.h The Linux API MTD Headers

/usr/include/rdma/*.h The Linux API RDMA Headers

/usr/include/scsi/*.h The Linux API SCSI Headers

/usr/include/sound/*.h The Linux API Sound Headers

/usr/include/video/*.h The Linux API Video Headers

/usr/include/xen/*.h The Linux API Xen Headers

49

Linux From Scratch - Version 12.0-systemd

5.5. Glibc-2.38
The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching
directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

Approximate build time: 1.6 SBU
Required disk space: 858 MB

5.5.1. Installation of Glibc

First, create a symbolic link for LSB compliance. Additionally, for x86_64, create a compatibility symbolic link required
for proper operation of the dynamic library loader:

case $(uname -m) in
 i?86) ln -sfv ld-linux.so.2 $LFS/lib/ld-lsb.so.3
 ;;
 x86_64) ln -sfv ../lib/ld-linux-x86-64.so.2 $LFS/lib64
 ln -sfv ../lib/ld-linux-x86-64.so.2 $LFS/lib64/ld-lsb-x86-64.so.3
 ;;
esac

Note

The above command is correct. The ln command has several syntactic versions, so be sure to check info
coreutils ln and ln(1) before reporting what may appear to be an error.

Some of the Glibc programs use the non-FHS-compliant /var/db directory to store their runtime data. Apply the
following patch to make such programs store their runtime data in the FHS-compliant locations:

patch -Np1 -i ../glibc-2.38-fhs-1.patch

The Glibc documentation recommends building Glibc in a dedicated build directory:

mkdir -v build
cd build

Ensure that the ldconfig and sln utilities are installed into /usr/sbin:

echo "rootsbindir=/usr/sbin" > configparms

Next, prepare Glibc for compilation:

../configure \
 --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(../scripts/config.guess) \
 --enable-kernel=4.14 \
 --with-headers=$LFS/usr/include \
 libc_cv_slibdir=/usr/lib

The meaning of the configure options:

--host=$LFS_TGT, --build=$(../scripts/config.guess)

The combined effect of these switches is that Glibc's build system configures itself to be cross-compiled, using
the cross-linker and cross-compiler in $LFS/tools.

50

Linux From Scratch - Version 12.0-systemd

--enable-kernel=4.14

This tells Glibc to compile the library with support for 4.14 and later Linux kernels. Workarounds for older kernels
are not enabled.

--with-headers=$LFS/usr/include

This tells Glibc to compile itself against the headers recently installed to the $LFS/usr/include directory, so that it
knows exactly what features the kernel has and can optimize itself accordingly.

libc_cv_slibdir=/usr/lib

This ensures that the library is installed in /usr/lib instead of the default /lib64 on 64-bit machines.

During this stage the following warning might appear:

configure: WARNING:
*** These auxiliary programs are missing or
*** incompatible versions: msgfmt
*** some features will be disabled.
*** Check the INSTALL file for required versions.

The missing or incompatible msgfmt program is generally harmless. This msgfmt program is part of the Gettext
package, which the host distribution should provide.

Note

There have been reports that this package may fail when building as a "parallel make". If that occurs, rerun
the make command with the "-j1" option.

Compile the package:

make

Install the package:

Warning

If LFS is not properly set, and despite the recommendations, you are building as root, the next command will
install the newly built Glibc to your host system, which will almost certainly render it unusable. So double-
check that the environment is correctly set, and that you are not root, before running the following command.

make DESTDIR=$LFS install

The meaning of the make install option:

DESTDIR=$LFS

The DESTDIR make variable is used by almost all packages to define the location where the package should be
installed. If it is not set, it defaults to the root (/) directory. Here we specify that the package is installed in $LFS ,
which will become the root directory in Section 7.4, “Entering the Chroot Environment”.

Fix a hard coded path to the executable loader in the ldd script:

sed '/RTLDLIST=/s@/usr@@g' -i $LFS/usr/bin/ldd

51

Linux From Scratch - Version 12.0-systemd

Caution

At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new
toolchain are working as expected. To perform a sanity check, run the following commands:

echo 'int main(){}' | $LFS_TGT-gcc -xc -
readelf -l a.out | grep ld-linux

If everything is working correctly, there should be no errors, and the output of the last command will be of
the form:

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

Note that for 32-bit machines, the interpreter name will be /lib/ld-linux.so.2.

If the output is not as shown above, or there is no output at all, then something is wrong. Investigate and
retrace the steps to find out where the problem is and correct it. This issue must be resolved before continuing.

Once all is well, clean up the test file:

rm -v a.out

Note

Building the packages in the next chapter will serve as an additional check that the toolchain has been built
properly. If some package, especially Binutils-pass2 or GCC-pass2, fails to build, it is an indication that
something has gone wrong with the preceding Binutils, GCC, or Glibc installations.

Details on this package are located in Section 8.5.3, “Contents of Glibc.”

52

Linux From Scratch - Version 12.0-systemd

5.6. Libstdc++ from GCC-13.2.0
Libstdc++ is the standard C++ library. It is needed to compile C++ code (part of GCC is written in C++), but we had
to defer its installation when we built gcc-pass1 because Libstdc++ depends on Glibc, which was not yet available in
the target directory.

Approximate build time: 0.2 SBU
Required disk space: 1.1 GB

5.6.1. Installation of Target Libstdc++

Note

Libstdc++ is part of the GCC sources. You should first unpack the GCC tarball and change to the gcc-13.
2.0 directory.

Create a separate build directory for Libstdc++ and enter it:

mkdir -v build
cd build

Prepare Libstdc++ for compilation:

../libstdc++-v3/configure \
 --host=$LFS_TGT \
 --build=$(../config.guess) \
 --prefix=/usr \
 --disable-multilib \
 --disable-nls \
 --disable-libstdcxx-pch \
 --with-gxx-include-dir=/tools/$LFS_TGT/include/c++/13.2.0

The meaning of the configure options:

--host=...

Specifies that the cross-compiler we have just built should be used instead of the one in /usr/bin.

--disable-libstdcxx-pch

This switch prevents the installation of precompiled include files, which are not needed at this stage.

--with-gxx-include-dir=/tools/$LFS_TGT/include/c++/13.2.0

This specifies the installation directory for include files. Because Libstdc++ is the standard C++ library for LFS,
this directory should match the location where the C++ compiler ($LFS_TGT-g++) would search for the standard
C++ include files. In a normal build, this information is automatically passed to the Libstdc++ configure options
from the top level directory. In our case, this information must be explicitly given. The C++ compiler will prepend
the sysroot path $LFS (specified when building GCC-pass1) to the include file search path, so it will actually
search in $LFS/tools/$LFS_TGT/include/c++/13.2.0. The combination of the DESTDIR variable (in the make install
command below) and this switch causes the headers to be installed there.

Compile Libstdc++ by running:

make

Install the library:

make DESTDIR=$LFS install

53

Linux From Scratch - Version 12.0-systemd

Remove the libtool archive files because they are harmful for cross-compilation:

rm -v $LFS/usr/lib/lib{stdc++,stdc++fs,supc++}.la

Details on this package are located in Section 8.27.2, “Contents of GCC.”

54

Linux From Scratch - Version 12.0-systemd

Chapter 6. Cross Compiling Temporary Tools

6.1. Introduction
This chapter shows how to cross-compile basic utilities using the just built cross-toolchain. Those utilities are installed
into their final location, but cannot be used yet. Basic tasks still rely on the host's tools. Nevertheless, the installed
libraries are used when linking.

Using the utilities will be possible in the next chapter after entering the “chroot” environment. But all the packages built
in the present chapter need to be built before we do that. Therefore we cannot be independent of the host system yet.

Once again, let us recall that improper setting of LFS together with building as root, may render your computer unusable.
This whole chapter must be done as user lfs, with the environment as described in Section 4.4, “Setting Up the
Environment”.

55

Linux From Scratch - Version 12.0-systemd

6.2. M4-1.4.19
The M4 package contains a macro processor.

Approximate build time: 0.1 SBU
Required disk space: 31 MB

6.2.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.12.2, “Contents of M4.”

56

Linux From Scratch - Version 12.0-systemd

6.3. Ncurses-6.4
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.3 SBU
Required disk space: 51 MB

6.3.1. Installation of Ncurses
First, ensure that gawk is found first during configuration:

sed -i s/mawk// configure

Then, run the following commands to build the “tic” program on the build host:

mkdir build
pushd build
 ../configure
 make -C include
 make -C progs tic
popd

Prepare Ncurses for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(./config.guess) \
 --mandir=/usr/share/man \
 --with-manpage-format=normal \
 --with-shared \
 --without-normal \
 --with-cxx-shared \
 --without-debug \
 --without-ada \
 --disable-stripping \
 --enable-widec

The meaning of the new configure options:

--with-manpage-format=normal

This prevents Ncurses installing compressed manual pages, which may happen if the host distribution itself has
compressed manual pages.

--with-shared

This makes Ncurses build and install shared C libraries.

--without-normal

This prevents Ncurses building and installing static C libraries.

--without-debug

This prevents Ncurses building and installing debug libraries.

--with-cxx-shared

This makes Ncurses build and install shared C++ bindings. It also prevents it building and installing static C+
+ bindings.

--without-ada

This ensures that Ncurses does not build support for the Ada compiler, which may be present on the host but will
not be available once we enter the chroot environment.

57

Linux From Scratch - Version 12.0-systemd

--disable-stripping

This switch prevents the building system from using the strip program from the host. Using host tools on cross-
compiled programs can cause failure.

--enable-widec

This switch causes wide-character libraries (e.g., libncursesw.so.6.4) to be built instead of normal ones (e.g.,
libncurses.so.6.4). These wide-character libraries are usable in both multibyte and traditional 8-bit locales, while
normal libraries work properly only in 8-bit locales. Wide-character and normal libraries are source-compatible,
but not binary-compatible.

Compile the package:

make

Install the package:

make DESTDIR=$LFS TIC_PATH=$(pwd)/build/progs/tic install
echo "INPUT(-lncursesw)" > $LFS/usr/lib/libncurses.so

The meaning of the install options:

TIC_PATH=$(pwd)/build/progs/tic

We need to pass the path of the newly built tic program that runs on the building machine, so the terminal database
can be created without errors.

echo "INPUT(-lncursesw)" > $LFS/usr/lib/libncurses.so
The libncurses.so library is needed by a few packages we will build soon. We create this small linker script, as
this is what is done in Chapter 8.

Details on this package are located in Section 8.29.2, “Contents of Ncurses.”

58

Linux From Scratch - Version 12.0-systemd

6.4. Bash-5.2.15
The Bash package contains the Bourne-Again Shell.

Approximate build time: 0.2 SBU
Required disk space: 67 MB

6.4.1. Installation of Bash
Prepare Bash for compilation:

./configure --prefix=/usr \
 --build=$(sh support/config.guess) \
 --host=$LFS_TGT \
 --without-bash-malloc

The meaning of the configure options:

--without-bash-malloc

This option turns off the use of Bash's memory allocation (malloc) function which is known to cause segmentation
faults. By turning this option off, Bash will use the malloc functions from Glibc which are more stable.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Make a link for the programs that use sh for a shell:

ln -sv bash $LFS/bin/sh

Details on this package are located in Section 8.35.2, “Contents of Bash.”

59

Linux From Scratch - Version 12.0-systemd

6.5. Coreutils-9.3
The Coreutils package contains the basic utility programs needed by every operating system.

Approximate build time: 0.3 SBU
Required disk space: 168 MB

6.5.1. Installation of Coreutils
Prepare Coreutils for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess) \
 --enable-install-program=hostname \
 --enable-no-install-program=kill,uptime \
 gl_cv_macro_MB_CUR_MAX_good=y

The meaning of the configure options:

--enable-install-program=hostname

This enables the hostname binary to be built and installed – it is disabled by default but is required by the Perl
test suite.

gl_cv_macro_MB_CUR_MAX_good=y

This is needed to work around an issue in the gnulib copy shipped by the package which would break cross
compilation.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Move programs to their final expected locations. Although this is not necessary in this temporary environment, we must
do so because some programs hardcode executable locations:

mv -v $LFS/usr/bin/chroot $LFS/usr/sbin
mkdir -pv $LFS/usr/share/man/man8
mv -v $LFS/usr/share/man/man1/chroot.1 $LFS/usr/share/man/man8/chroot.8
sed -i 's/"1"/"8"/' $LFS/usr/share/man/man8/chroot.8

Details on this package are located in Section 8.56.2, “Contents of Coreutils.”

60

Linux From Scratch - Version 12.0-systemd

6.6. Diffutils-3.10
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.1 SBU
Required disk space: 29 MB

6.6.1. Installation of Diffutils
Prepare Diffutils for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(./build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.58.2, “Contents of Diffutils.”

61

Linux From Scratch - Version 12.0-systemd

6.7. File-5.45
The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.1 SBU
Required disk space: 37 MB

6.7.1. Installation of File
The file command on the build host needs to be the same version as the one we are building in order to create the
signature file. Run the following commands to make a temporary copy of the file command:

mkdir build
pushd build
 ../configure --disable-bzlib \
 --disable-libseccomp \
 --disable-xzlib \
 --disable-zlib
 make
popd

The meaning of the new configure option:

--disable-*

The configuration script attempts to use some packages from the host distribution if the corresponding library files
exist. It may cause compilation failure if a library file exists, but the corresponding header files do not. These
options prevent using these unneeded capabilities from the host.

Prepare File for compilation:

./configure --prefix=/usr --host=$LFS_TGT --build=$(./config.guess)

Compile the package:

make FILE_COMPILE=$(pwd)/build/src/file

Install the package:

make DESTDIR=$LFS install

Remove the libtool archive file because it is harmful for cross compilation:

rm -v $LFS/usr/lib/libmagic.la

Details on this package are located in Section 8.10.2, “Contents of File.”

62

Linux From Scratch - Version 12.0-systemd

6.8. Findutils-4.9.0
The Findutils package contains programs to find files. Programs are provided to search through all the files in a directory
tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable unless the database
has been updated recently). Findutils also supplies the xargs program, which can be used to run a specified command
on each file selected by a search.

Approximate build time: 0.1 SBU
Required disk space: 42 MB

6.8.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/usr \
 --localstatedir=/var/lib/locate \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.60.2, “Contents of Findutils.”

63

Linux From Scratch - Version 12.0-systemd

6.9. Gawk-5.2.2
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.1 SBU
Required disk space: 48 MB

6.9.1. Installation of Gawk
First, ensure some unneeded files are not installed:

sed -i 's/extras//' Makefile.in

Prepare Gawk for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.59.2, “Contents of Gawk.”

64

Linux From Scratch - Version 12.0-systemd

6.10. Grep-3.11
The Grep package contains programs for searching through the contents of files.

Approximate build time: 0.1 SBU
Required disk space: 27 MB

6.10.1. Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(./build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.34.2, “Contents of Grep.”

65

Linux From Scratch - Version 12.0-systemd

6.11. Gzip-1.12
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.1 SBU
Required disk space: 11 MB

6.11.1. Installation of Gzip
Prepare Gzip for compilation:

./configure --prefix=/usr --host=$LFS_TGT

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.63.2, “Contents of Gzip.”

66

Linux From Scratch - Version 12.0-systemd

6.12. Make-4.4.1
The Make package contains a program for controlling the generation of executables and other non-source files of a
package from source files.

Approximate build time: less than 0.1 SBU
Required disk space: 15 MB

6.12.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/usr \
 --without-guile \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess)

The meaning of the new configure option:

--without-guile

Although we are cross-compiling, configure tries to use guile from the build host if it finds it. This makes
compilation fail, so this switch prevents using it.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.67.2, “Contents of Make.”

67

Linux From Scratch - Version 12.0-systemd

6.13. Patch-2.7.6
The Patch package contains a program for modifying or creating files by applying a “patch” file typically created by
the diff program.

Approximate build time: 0.1 SBU
Required disk space: 12 MB

6.13.1. Installation of Patch
Prepare Patch for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.68.2, “Contents of Patch.”

68

Linux From Scratch - Version 12.0-systemd

6.14. Sed-4.9
The Sed package contains a stream editor.

Approximate build time: 0.1 SBU
Required disk space: 21 MB

6.14.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(./build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.30.2, “Contents of Sed.”

69

Linux From Scratch - Version 12.0-systemd

6.15. Tar-1.35
The Tar package provides the ability to create tar archives as well as perform various other kinds of archive
manipulation. Tar can be used on previously created archives to extract files, to store additional files, or to update or
list files which were already stored.

Approximate build time: 0.1 SBU
Required disk space: 42 MB

6.15.1. Installation of Tar
Prepare Tar for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.69.2, “Contents of Tar.”

70

Linux From Scratch - Version 12.0-systemd

6.16. Xz-5.4.4
The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma and
the newer xz compression formats. Compressing text files with xz yields a better compression percentage than with
the traditional gzip or bzip2 commands.

Approximate build time: 0.1 SBU
Required disk space: 22 MB

6.16.1. Installation of Xz
Prepare Xz for compilation:

./configure --prefix=/usr \
 --host=$LFS_TGT \
 --build=$(build-aux/config.guess) \
 --disable-static \
 --docdir=/usr/share/doc/xz-5.4.4

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Remove the libtool archive file because it is harmful for cross compilation:

rm -v $LFS/usr/lib/liblzma.la

Details on this package are located in Section 8.8.2, “Contents of Xz.”

71

Linux From Scratch - Version 12.0-systemd

6.17. Binutils-2.41 - Pass 2
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 0.5 SBU
Required disk space: 523 MB

6.17.1. Installation of Binutils
Binutils ships an outdated copy of libtool in the tarball. It lacks sysroot support, so the produced binaries will be
mistakenly linked to libraries from the host distro. Work around this issue:

sed '6009s/$add_dir//' -i ltmain.sh

Create a separate build directory again:

mkdir -v build
cd build

Prepare Binutils for compilation:

../configure \
 --prefix=/usr \
 --build=$(../config.guess) \
 --host=$LFS_TGT \
 --disable-nls \
 --enable-shared \
 --enable-gprofng=no \
 --disable-werror \
 --enable-64-bit-bfd

The meaning of the new configure options:

--enable-shared

Builds libbfd as a shared library.

--enable-64-bit-bfd

Enables 64-bit support (on hosts with smaller word sizes). This may not be needed on 64-bit systems, but it does
no harm.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Remove the libtool archive files because they are harmful for cross compilation, and remove unnecessary static libraries:

rm -v $LFS/usr/lib/lib{bfd,ctf,ctf-nobfd,opcodes,sframe}.{a,la}

Details on this package are located in Section 8.18.2, “Contents of Binutils.”

72

Linux From Scratch - Version 12.0-systemd

6.18. GCC-13.2.0 - Pass 2
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 4.3 SBU
Required disk space: 4.8 GB

6.18.1. Installation of GCC

As in the first build of GCC, the GMP, MPFR, and MPC packages are required. Unpack the tarballs and move them
into the required directories:

tar -xf ../mpfr-4.2.0.tar.xz
mv -v mpfr-4.2.0 mpfr
tar -xf ../gmp-6.3.0.tar.xz
mv -v gmp-6.3.0 gmp
tar -xf ../mpc-1.3.1.tar.gz
mv -v mpc-1.3.1 mpc

If building on x86_64, change the default directory name for 64-bit libraries to “lib”:

case $(uname -m) in
 x86_64)
 sed -e '/m64=/s/lib64/lib/' -i.orig gcc/config/i386/t-linux64
 ;;
esac

Override the building rule of libgcc and libstdc++ headers, to allow building these libraries with POSIX threads support:

sed '/thread_header =/s/@.*@/gthr-posix.h/' \
 -i libgcc/Makefile.in libstdc++-v3/include/Makefile.in

Create a separate build directory again:

mkdir -v build
cd build

Before starting to build GCC, remember to unset any environment variables that override the default optimization flags.

Now prepare GCC for compilation:

../configure \
 --build=$(../config.guess) \
 --host=$LFS_TGT \
 --target=$LFS_TGT \
 LDFLAGS_FOR_TARGET=-L$PWD/$LFS_TGT/libgcc \
 --prefix=/usr \
 --with-build-sysroot=$LFS \
 --enable-default-pie \
 --enable-default-ssp \
 --disable-nls \
 --disable-multilib \
 --disable-libatomic \
 --disable-libgomp \
 --disable-libquadmath \
 --disable-libsanitizer \
 --disable-libssp \
 --disable-libvtv \
 --enable-languages=c,c++

73

Linux From Scratch - Version 12.0-systemd

The meaning of the new configure options:

--with-build-sysroot=$LFS

Normally, using --host ensures that a cross-compiler is used for building GCC, and that compiler knows that it
has to look for headers and libraries in $LFS. But the build system for GCC uses other tools, which are not aware
of this location. This switch is needed so those tools will find the needed files in $LFS, and not on the host.

--target=$LFS_TGT

We are cross-compiling GCC, so it's impossible to build target libraries (libgcc and libstdc++) with the previously
compiled GCC binaries—those binaries won't run on the host. The GCC build system will attempt to use the host's
C and C++ compilers as a workaround by default. Building the GCC target libraries with a different version of
GCC is not supported, so using the host's compilers may cause the build to fail. This parameter ensures the libraries
are built by GCC pass 1.

LDFLAGS_FOR_TARGET=...

Allow libstdc++ to use the shared libgcc being built in this pass, instead of the static version that was built in
GCC pass 1. This is necessary to support C++ exception handling.

--disable-libsanitizer

Disable GCC sanitizer runtime libraries. They are not needed for the temporary installation. This switch is
necessary to build GCC without libcrypt installed for the target. In gcc-pass1 it was implied by --disable-
libstdcxx, but now we have to explicitly pass it.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

As a finishing touch, create a utility symlink. Many programs and scripts run cc instead of gcc, which is used to keep
programs generic and therefore usable on all kinds of UNIX systems where the GNU C compiler is not always installed.
Running cc leaves the system administrator free to decide which C compiler to install:

ln -sv gcc $LFS/usr/bin/cc

Details on this package are located in Section 8.27.2, “Contents of GCC.”

74

Linux From Scratch - Version 12.0-systemd

Chapter 7. Entering Chroot and Building Additional
Temporary Tools

7.1. Introduction
This chapter shows how to build the last missing bits of the temporary system: the tools needed to build the various
packages. Now that all circular dependencies have been resolved, a “chroot” environment, completely isolated from
the host operating system (except for the running kernel), can be used for the build.

For proper operation of the isolated environment, some communication with the running kernel must be established.
This is done via the so-called Virtual Kernel File Systems, which will be mounted before entering the chroot
environment. You may want to verify that they are mounted by issuing the findmnt command.

Until Section 7.4, “Entering the Chroot Environment”, the commands must be run as root, with the LFS variable set.
After entering chroot, all commands are run as root, fortunately without access to the OS of the computer you built
LFS on. Be careful anyway, as it is easy to destroy the whole LFS system with bad commands.

7.2. Changing Ownership

Note

The commands in the remainder of this book must be performed while logged in as user root and no longer
as user lfs. Also, double check that $LFS is set in root's environment.

Currently, the whole directory hierarchy in $LFS is owned by the user lfs, a user that exists only on the host system.
If the directories and files under $LFS are kept as they are, they will be owned by a user ID without a corresponding
account. This is dangerous because a user account created later could get this same user ID and would own all the files
under $LFS, thus exposing these files to possible malicious manipulation.

To address this issue, change the ownership of the $LFS/* directories to user root by running the following command:

chown -R root:root $LFS/{usr,lib,var,etc,bin,sbin,tools}
case $(uname -m) in
 x86_64) chown -R root:root $LFS/lib64 ;;
esac

7.3. Preparing Virtual Kernel File Systems
Applications running in userspace utilize various file systems created by the kernel to communicate with the kernel
itself. These file systems are virtual: no disk space is used for them. The content of these file systems resides in
memory. These file systems must be mounted in the $LFS directory tree so the applications can find them in the chroot
environment.

Begin by creating the directories on which these virtual file systems will be mounted:

mkdir -pv $LFS/{dev,proc,sys,run}

7.3.1. Mounting and Populating /dev
During a normal boot of an LFS system, the kernel automatically mounts the devtmpfs file system on the /dev directory;
the kernel creates device nodes on that virtual file system during the boot process, or when a device is first detected
or accessed. The udev daemon may change the ownership or permissions of the device nodes created by the kernel,

75

Linux From Scratch - Version 12.0-systemd

and create new device nodes or symlinks, to ease the work of distro maintainers and system administrators. (See
Section 9.3.2.2, “Device Node Creation” for details.) If the host kernel supports devtmpfs, we can simply mount a
devtmpfs at $LFS/dev and rely on the kernel to populate it.

But some host kernels lack devtmpfs support; these host distros use different methods to create the content of /dev. So
the only host-agnostic way to populate the $LFS/dev directory is by bind mounting the host system's /dev directory. A
bind mount is a special type of mount that makes a directory subtree or a file visible at some other location. Use the
following command to do this.

mount -v --bind /dev $LFS/dev

7.3.2. Mounting Virtual Kernel File Systems
Now mount the remaining virtual kernel file systems:

mount -v --bind /dev/pts $LFS/dev/pts
mount -vt proc proc $LFS/proc
mount -vt sysfs sysfs $LFS/sys
mount -vt tmpfs tmpfs $LFS/run

In some host systems, /dev/shm is a symbolic link to /run/shm. The /run tmpfs was mounted above so in this case only
a directory needs to be created.

In other host systems /dev/shm is a mount point for a tmpfs. In that case the mount of /dev above will only create /dev/
shm as a directory in the chroot environment. In this situation we must explicitly mount a tmpfs:

if [-h $LFS/dev/shm]; then
 mkdir -pv $LFS/$(readlink $LFS/dev/shm)
else
 mount -t tmpfs -o nosuid,nodev tmpfs $LFS/dev/shm
fi

7.4. Entering the Chroot Environment
Now that all the packages which are required to build the rest of the needed tools are on the system, it is time to enter
the chroot environment and finish installing the temporary tools. This environment will also be used to install the final
system. As user root, run the following command to enter the environment that is, at the moment, populated with
nothing but temporary tools:

chroot "$LFS" /usr/bin/env -i \
 HOME=/root \
 TERM="$TERM" \
 PS1='(lfs chroot) \u:\w\$ ' \
 PATH=/usr/bin:/usr/sbin \
 /bin/bash --login

The -i option given to the env command will clear all the variables in the chroot environment. After that, only the HOME,
TERM, PS1, and PATH variables are set again. The TERM=$TERM construct sets the TERM variable inside chroot to the same
value as outside chroot. This variable is needed so programs like vim and less can operate properly. If other variables
are desired, such as CFLAGS or CXXFLAGS, this is a good place to set them.

From this point on, there is no need to use the LFS variable any more because all work will be restricted to the LFS file
system; the chroot command runs the Bash shell with the root (/) directory set to $LFS.

Notice that /tools/bin is not in the PATH. This means that the cross toolchain will no longer be used.

Note that the bash prompt will say I have no name! This is normal because the /etc/passwd file has not been created yet.

76

Linux From Scratch - Version 12.0-systemd

Note

It is important that all the commands throughout the remainder of this chapter and the following chapters
are run from within the chroot environment. If you leave this environment for any reason (rebooting for
example), ensure that the virtual kernel filesystems are mounted as explained in Section 7.3.1, “Mounting and
Populating /dev” and Section 7.3.2, “Mounting Virtual Kernel File Systems” and enter chroot again before
continuing with the installation.

7.5. Creating Directories
It is time to create the full directory structure in the LFS file system.

Note

Some of the directories mentioned in this section may have already been created earlier with explicit
instructions, or when installing some packages. They are repeated below for completeness.

Create some root-level directories that are not in the limited set required in the previous chapters by issuing the following
command:

mkdir -pv /{boot,home,mnt,opt,srv}

Create the required set of subdirectories below the root-level by issuing the following commands:

mkdir -pv /etc/{opt,sysconfig}
mkdir -pv /lib/firmware
mkdir -pv /media/{floppy,cdrom}
mkdir -pv /usr/{,local/}{include,src}
mkdir -pv /usr/local/{bin,lib,sbin}
mkdir -pv /usr/{,local/}share/{color,dict,doc,info,locale,man}
mkdir -pv /usr/{,local/}share/{misc,terminfo,zoneinfo}
mkdir -pv /usr/{,local/}share/man/man{1..8}
mkdir -pv /var/{cache,local,log,mail,opt,spool}
mkdir -pv /var/lib/{color,misc,locate}

ln -sfv /run /var/run
ln -sfv /run/lock /var/lock

install -dv -m 0750 /root
install -dv -m 1777 /tmp /var/tmp

Directories are, by default, created with permission mode 755, but this is not desirable everywhere. In the commands
above, two changes are made—one to the home directory of user root, and another to the directories for temporary files.

The first mode change ensures that not just anybody can enter the /root directory—just like a normal user would do
with his or her own home directory. The second mode change makes sure that any user can write to the /tmp and /
var/tmp directories, but cannot remove another user's files from them. The latter is prohibited by the so-called “sticky
bit,” the highest bit (1) in the 1777 bit mask.

7.5.1. FHS Compliance Note
This directory tree is based on the Filesystem Hierarchy Standard (FHS) (available at https://refspecs.linuxfoundation.
org/fhs.shtml). The FHS also specifies the optional existence of additional directories such as /usr/local/games and
/usr/share/games. In LFS, we create only the directories that are really necessary. However, feel free to create more
directories, if you wish.

77

https://refspecs.linuxfoundation.org/fhs.shtml
https://refspecs.linuxfoundation.org/fhs.shtml

Linux From Scratch - Version 12.0-systemd

Warning

The FHS does not mandate the existence of the directory /usr/lib64, and the LFS editors have decided not
to use it. For the instructions in LFS and BLFS to work correctly, it is imperative that this directory be non-
existent. From time to time you should verify that it does not exist, because it is easy to create it inadvertently,
and this will probably break your system.

7.6. Creating Essential Files and Symlinks
Historically, Linux maintained a list of the mounted file systems in the file /etc/mtab. Modern kernels maintain this
list internally and expose it to the user via the /proc filesystem. To satisfy utilities that expect to find /etc/mtab, create
the following symbolic link:

ln -sv /proc/self/mounts /etc/mtab

Create a basic /etc/hosts file to be referenced in some test suites, and in one of Perl's configuration files as well:

cat > /etc/hosts << EOF
127.0.0.1 localhost $(hostname)
::1 localhost
EOF

In order for user root to be able to login and for the name “root” to be recognized, there must be relevant entries in
the /etc/passwd and /etc/group files.

Create the /etc/passwd file by running the following command:

cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/dev/null:/usr/bin/false
daemon:x:6:6:Daemon User:/dev/null:/usr/bin/false
messagebus:x:18:18:D-Bus Message Daemon User:/run/dbus:/usr/bin/false
systemd-journal-gateway:x:73:73:systemd Journal Gateway:/:/usr/bin/false
systemd-journal-remote:x:74:74:systemd Journal Remote:/:/usr/bin/false
systemd-journal-upload:x:75:75:systemd Journal Upload:/:/usr/bin/false
systemd-network:x:76:76:systemd Network Management:/:/usr/bin/false
systemd-resolve:x:77:77:systemd Resolver:/:/usr/bin/false
systemd-timesync:x:78:78:systemd Time Synchronization:/:/usr/bin/false
systemd-coredump:x:79:79:systemd Core Dumper:/:/usr/bin/false
uuidd:x:80:80:UUID Generation Daemon User:/dev/null:/usr/bin/false
systemd-oom:x:81:81:systemd Out Of Memory Daemon:/:/usr/bin/false
nobody:x:65534:65534:Unprivileged User:/dev/null:/usr/bin/false
EOF

The actual password for root will be set later.

78

Linux From Scratch - Version 12.0-systemd

Create the /etc/group file by running the following command:

cat > /etc/group << "EOF"
root:x:0:
bin:x:1:daemon
sys:x:2:
kmem:x:3:
tape:x:4:
tty:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
cdrom:x:15:
adm:x:16:
messagebus:x:18:
systemd-journal:x:23:
input:x:24:
mail:x:34:
kvm:x:61:
systemd-journal-gateway:x:73:
systemd-journal-remote:x:74:
systemd-journal-upload:x:75:
systemd-network:x:76:
systemd-resolve:x:77:
systemd-timesync:x:78:
systemd-coredump:x:79:
uuidd:x:80:
systemd-oom:x:81:
wheel:x:97:
users:x:999:
nogroup:x:65534:
EOF

The created groups are not part of any standard—they are groups decided on in part by the requirements of the Udev
configuration in Chapter 9, and in part by common conventions employed by a number of existing Linux distributions.
In addition, some test suites rely on specific users or groups. The Linux Standard Base (LSB, available at https://
refspecs.linuxfoundation.org/lsb.shtml) only recommends that, besides the group root with a Group ID (GID) of 0, a
group bin with a GID of 1 be present. The GID of 5 is widely used for the tty group, and the number 5 is also used in
systemd for the devpts filesystem. All other group names and GIDs can be chosen freely by the system administrator
since well-written programs do not depend on GID numbers, but rather use the group's name.

The ID 65534 is used by the kernel for NFS and separate user namespaces for unmapped users and groups (those exist
on the NFS server or the parent user namespace, but “do not exist” on the local machine or in the separate namespace).
We assign nobody and nogroup to avoid an unnamed ID. But other distros may treat this ID differently, so any portable
program should not depend on this assignment.

Some tests in Chapter 8 need a regular user. We add this user here and delete this account at the end of that chapter.

echo "tester:x:101:101::/home/tester:/bin/bash" >> /etc/passwd
echo "tester:x:101:" >> /etc/group
install -o tester -d /home/tester

79

https://refspecs.linuxfoundation.org/lsb.shtml
https://refspecs.linuxfoundation.org/lsb.shtml

Linux From Scratch - Version 12.0-systemd

To remove the “I have no name!” prompt, start a new shell. Since the /etc/passwd and /etc/group files have been
created, user name and group name resolution will now work:

exec /usr/bin/bash --login

The login, agetty, and init programs (and others) use a number of log files to record information such as who was
logged into the system and when. However, these programs will not write to the log files if they do not already exist.
Initialize the log files and give them proper permissions:

touch /var/log/{btmp,lastlog,faillog,wtmp}
chgrp -v utmp /var/log/lastlog
chmod -v 664 /var/log/lastlog
chmod -v 600 /var/log/btmp

The /var/log/wtmp file records all logins and logouts. The /var/log/lastlog file records when each user last logged
in. The /var/log/faillog file records failed login attempts. The /var/log/btmp file records the bad login attempts.

Note

The /run/utmp file records the users that are currently logged in. This file is created dynamically in the boot
scripts.

80

Linux From Scratch - Version 12.0-systemd

7.7. Gettext-0.22
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled
with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 1.1 SBU
Required disk space: 306 MB

7.7.1. Installation of Gettext
For our temporary set of tools, we only need to install three programs from Gettext.

Prepare Gettext for compilation:

./configure --disable-shared

The meaning of the configure option:

--disable-shared

We do not need to install any of the shared Gettext libraries at this time, therefore there is no need to build them.

Compile the package:

make

Install the msgfmt, msgmerge, and xgettext programs:

cp -v gettext-tools/src/{msgfmt,msgmerge,xgettext} /usr/bin

Details on this package are located in Section 8.32.2, “Contents of Gettext.”

81

Linux From Scratch - Version 12.0-systemd

7.8. Bison-3.8.2
The Bison package contains a parser generator.

Approximate build time: 0.2 SBU
Required disk space: 57 MB

7.8.1. Installation of Bison
Prepare Bison for compilation:

./configure --prefix=/usr \
 --docdir=/usr/share/doc/bison-3.8.2

The meaning of the new configure option:

--docdir=/usr/share/doc/bison-3.8.2

This tells the build system to install bison documentation into a versioned directory.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.33.2, “Contents of Bison.”

82

Linux From Scratch - Version 12.0-systemd

7.9. Perl-5.38.0
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 0.6 SBU
Required disk space: 280 MB

7.9.1. Installation of Perl
Prepare Perl for compilation:

sh Configure -des \
 -Dprefix=/usr \
 -Dvendorprefix=/usr \
 -Duseshrplib \
 -Dprivlib=/usr/lib/perl5/5.38/core_perl \
 -Darchlib=/usr/lib/perl5/5.38/core_perl \
 -Dsitelib=/usr/lib/perl5/5.38/site_perl \
 -Dsitearch=/usr/lib/perl5/5.38/site_perl \
 -Dvendorlib=/usr/lib/perl5/5.38/vendor_perl \
 -Dvendorarch=/usr/lib/perl5/5.38/vendor_perl

The meaning of the new Configure options:

-des

This is a combination of three options: -d uses defaults for all items; -e ensures completion of all tasks; -s silences
non-essential output.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.42.2, “Contents of Perl.”

83

Linux From Scratch - Version 12.0-systemd

7.10. Python-3.11.4
The Python 3 package contains the Python development environment. It is useful for object-oriented programming,
writing scripts, prototyping large programs, and developing entire applications. Python is an interpreted computer
language.

Approximate build time: 0.4 SBU
Required disk space: 533 MB

7.10.1. Installation of Python

Note

There are two package files whose name starts with “python”. The one to extract from is Python-3.11.4.tar.
xz (notice the uppercase first letter).

Prepare Python for compilation:

./configure --prefix=/usr \
 --enable-shared \
 --without-ensurepip

The meaning of the configure option:

--enable-shared

This switch prevents installation of static libraries.

--without-ensurepip

This switch disables the Python package installer, which is not needed at this stage.

Compile the package:

make

Note

Some Python 3 modules can't be built now because the dependencies are not installed yet. The building system
still attempts to build them however, so the compilation of some files will fail and the compiler message may
seem to indicate “fatal error”. The message should be ignored. Just make sure the toplevel make command
has not failed. The optional modules are not needed now and they will be built in Chapter 8.

Install the package:

make install

Details on this package are located in Section 8.51.2, “Contents of Python 3.”

84

Linux From Scratch - Version 12.0-systemd

7.11. Texinfo-7.0.3
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.1 SBU
Required disk space: 116 MB

7.11.1. Installation of Texinfo
Prepare Texinfo for compilation:

./configure --prefix=/usr

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.70.2, “Contents of Texinfo.”

85

Linux From Scratch - Version 12.0-systemd

7.12. Util-linux-2.39.1
The Util-linux package contains miscellaneous utility programs.

Approximate build time: 0.2 SBU
Required disk space: 169 MB

7.12.1. Installation of Util-linux
The FHS recommends using the /var/lib/hwclock directory instead of the usual /etc directory as the location for the
adjtime file. Create this directory with:

mkdir -pv /var/lib/hwclock

Prepare Util-linux for compilation:

./configure ADJTIME_PATH=/var/lib/hwclock/adjtime \
 --libdir=/usr/lib \
 --runstatedir=/run \
 --docdir=/usr/share/doc/util-linux-2.39.1 \
 --disable-chfn-chsh \
 --disable-login \
 --disable-nologin \
 --disable-su \
 --disable-setpriv \
 --disable-runuser \
 --disable-pylibmount \
 --disable-static \
 --without-python

The meaning of the configure options:

ADJTIME_PATH=/var/lib/hwclock/adjtime

This sets the location of the file recording information about the hardware clock in accordance to the FHS. This
is not strictly needed for this temporary tool, but it prevents creating a file at another location, which would not
be overwritten or removed when building the final util-linux package.

--libdir=/usr/lib

This switch ensures the .so symlinks targeting the shared library file in the same directory (/usr/lib) directly.

--disable-*

These switches prevent warnings about building components that require packages not in LFS or not installed yet.

--without-python

This switch disables using Python. It avoids trying to build unneeded bindings.

runstatedir=/run

This switch sets the location of the socket used by uuidd and libuuid correctly.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.78.2, “Contents of Util-linux.”

86

Linux From Scratch - Version 12.0-systemd

7.13. Cleaning up and Saving the Temporary System

7.13.1. Cleaning
First, remove the currently installed documentation files to prevent them from ending up in the final system, and to
save about 35 MB:

rm -rf /usr/share/{info,man,doc}/*

Second, on a modern Linux system, the libtool .la files are only useful for libltdl. No libraries in LFS are loaded by
libltdl, and it's known that some .la files can cause BLFS package failures. Remove those files now:

find /usr/{lib,libexec} -name *.la -delete

The current system size is now about 3 GB, however the /tools directory is no longer needed. It uses about 1 GB of
disk space. Delete it now:

rm -rf /tools

7.13.2. Backup
At this point the essential programs and libraries have been created and your current LFS system is in a good state.
Your system can now be backed up for later reuse. In case of fatal failures in the subsequent chapters, it often turns out
that removing everything and starting over (more carefully) is the best way to recover. Unfortunately, all the temporary
files will be removed, too. To avoid spending extra time to redo something which has been done successfully, creating
a backup of the current LFS system may prove useful.

Note

All the remaining steps in this section are optional. Nevertheless, as soon as you begin installing packages
in Chapter 8, the temporary files will be overwritten. So it may be a good idea to do a backup of the current
system as described below.

The following steps are performed from outside the chroot environment. That means you have to leave the chroot
environment first before continuing. The reason for that is to get access to file system locations outside of the chroot
environment to store/read the backup archive, which ought not be placed within the $LFS hierarchy.

If you have decided to make a backup, leave the chroot environment:

exit

Important

All of the following instructions are executed by root on your host system. Take extra care about the
commands you're going to run as mistakes made here can modify your host system. Be aware that the
environment variable LFS is set for user lfs by default but may not be set for root.

Whenever commands are to be executed by root, make sure you have set LFS.

This has been discussed in Section 2.6, “Setting The $LFS Variable”.

Before making a backup, unmount the virtual file systems:

mountpoint -q $LFS/dev/shm && umount $LFS/dev/shm
umount $LFS/dev/pts
umount $LFS/{sys,proc,run,dev}

87

Linux From Scratch - Version 12.0-systemd

Make sure you have at least 1 GB free disk space (the source tarballs will be included in the backup archive) on the
file system containing the directory where you create the backup archive.

Note that the instructions below specify the home directory of the host system's root user, which is typically found
on the root file system. Replace $HOME by a directory of your choice if you do not want to have the backup stored in
root's home directory.

Create the backup archive by running the following command:

Note

Because the backup archive is compressed, it takes a relatively long time (over 10 minutes) even on a
reasonably fast system.

cd $LFS
tar -cJpf $HOME/lfs-temp-tools-12.0-systemd.tar.xz .

Note

If continuing to chapter 8, don't forget to reenter the chroot environment as explained in the “Important” box
below.

7.13.3. Restore
In case some mistakes have been made and you need to start over, you can use this backup to restore the system and
save some recovery time. Since the sources are located under $LFS, they are included in the backup archive as well,
so they do not need to be downloaded again. After checking that $LFS is set properly, you can restore the backup by
executing the following commands:

Warning

The following commands are extremely dangerous. If you run rm -rf ./* as the root user and you do not
change to the $LFS directory or the LFS environment variable is not set for the root user, it will destroy your
entire host system. YOU ARE WARNED.

cd $LFS
rm -rf ./*
tar -xpf $HOME/lfs-temp-tools-12.0-systemd.tar.xz

Again, double check that the environment has been set up properly and continue building the rest of the system.

Important

If you left the chroot environment to create a backup or restart building using a restore, remember to check
that the virtual file systems are still mounted (findmnt | grep $LFS). If they are not mounted, remount them
now as described in Section 7.3, “Preparing Virtual Kernel File Systems” and re-enter the chroot environment
(see Section 7.4, “Entering the Chroot Environment”) before continuing.

88

Linux From Scratch - Version 12.0-systemd

Part IV. Building the LFS System

Linux From Scratch - Version 12.0-systemd

Chapter 8. Installing Basic System Software

8.1. Introduction
In this chapter, we start constructing the LFS system in earnest.

The installation of this software is straightforward. Although in many cases the installation instructions could be made
shorter and more generic, we have opted to provide the full instructions for every package to minimize the possibilities
for mistakes. The key to learning what makes a Linux system work is to know what each package is used for and why
you (or the system) may need it.

We do not recommend using customized optimizations. They can make a program run slightly faster, but they may
also cause compilation difficulties, and problems when running the program. If a package refuses to compile with a
customized optimization, try to compile it without optimization and see if that fixes the problem. Even if the package
does compile when using a customized optimization, there is the risk it may have been compiled incorrectly because
of the complex interactions between the code and the build tools. Also note that the -march and -mtune options using
values not specified in the book have not been tested. This may cause problems with the toolchain packages (Binutils,
GCC and Glibc). The small potential gains achieved by customizing compiler optimizations are often outweighed by
the risks. First-time builders of LFS are encouraged to build without custom optimizations.

On the other hand, we keep the optimizations enabled by the default configuration of the packages. In addition, we
sometimes explicitly enable an optimized configuration provided by a package but not enabled by default. The package
maintainers have already tested these configurations and consider them safe, so it's not likely they would break the
build. Generally the default configuration already enables -O2 or -O3, so the resulting system will still run very fast
without any customized optimization, and be stable at the same time.

Before the installation instructions, each installation page provides information about the package, including a concise
description of what it contains, approximately how long it will take to build, and how much disk space is required
during this building process. Following the installation instructions, there is a list of programs and libraries (along with
brief descriptions) that the package installs.

Note

The SBU values and required disk space include test suite data for all applicable packages in Chapter 8. SBU
values have been calculated using four CPU cores (-j4) for all operations unless specified otherwise.

8.1.1. About Libraries

In general, the LFS editors discourage building and installing static libraries. Most static libraries have been made
obsolete in a modern Linux system. In addition, linking a static library into a program can be detrimental. If an update
to the library is needed to remove a security problem, every program that uses the static library will need to be relinked
with the new library. Since the use of static libraries is not always obvious, the relevant programs (and the procedures
needed to do the linking) may not even be known.

The procedures in this chapter remove or disable installation of most static libraries. Usually this is done by passing a
--disable-static option to configure. In other cases, alternate means are needed. In a few cases, especially Glibc and
GCC, the use of static libraries remains an essential feature of the package building process.

For a more complete discussion of libraries, see Libraries: Static or shared? in the BLFS book.

90

https://www.linuxfromscratch.org/blfs/view/stable-systemd/introduction/libraries.html

Linux From Scratch - Version 12.0-systemd

8.2. Package Management
Package Management is an often requested addition to the LFS Book. A Package Manager tracks the installation of
files, making it easier to remove and upgrade packages. A good package manager will also handle the configuration files
specially to keep the user configuration when the package is reinstalled or upgraded. Before you begin to wonder, NO
—this section will not talk about nor recommend any particular package manager. What it does provide is a roundup of
the more popular techniques and how they work. The perfect package manager for you may be among these techniques,
or it may be a combination of two or more of these techniques. This section briefly mentions issues that may arise
when upgrading packages.

Some reasons why no package manager is mentioned in LFS or BLFS include:

• Dealing with package management takes the focus away from the goals of these books—teaching how a Linux
system is built.

• There are multiple solutions for package management, each having its strengths and drawbacks. Finding one
solution that satisfies all audiences is difficult.

There are some hints written on the topic of package management. Visit the Hints Project and see if one of them fits
your needs.

8.2.1. Upgrade Issues
A Package Manager makes it easy to upgrade to newer versions when they are released. Generally the instructions in
the LFS and BLFS books can be used to upgrade to the newer versions. Here are some points that you should be aware
of when upgrading packages, especially on a running system.

• If the Linux kernel needs to be upgraded (for example, from 5.10.17 to 5.10.18 or 5.11.1), nothing else needs to be
rebuilt. The system will keep working fine thanks to the well-defined interface between the kernel and userspace.
Specifically, Linux API headers need not be (and should not be, see the next item) upgraded along with the kernel.
You will merely need to reboot your system to use the upgraded kernel.

• If the Linux API headers or Glibc need to be upgraded to a newer version, (e.g., from Glibc-2.31 to Glibc-2.32), it
is safer to rebuild LFS. Though you may be able to rebuild all the packages in their dependency order, we do not
recommend it.

• If a package containing a shared library is updated, and if the name of the library changes, then any packages
dynamically linked to the library must be recompiled, to link against the newer library. (Note that there is no
correlation between the package version and the name of the library.) For example, consider a package foo-1.2.3
that installs a shared library with the name libfoo.so.1. Suppose you upgrade the package to a newer version
foo-1.2.4 that installs a shared library with the name libfoo.so.2. In this case, any packages that are dynamically
linked to libfoo.so.1 need to be recompiled to link against libfoo.so.2 in order to use the new library version.
You should not remove the old libraries until all the dependent packages have been recompiled.

• If a package is (directly or indirectly) linked to both the old and new names of a shared library (for example,
the package links to both libfoo.so.2 and libbar.so.1, while the latter links to libfoo.so.3), the package may
malfunction because the different revisions of the shared library present incompatible definitions for some symbol
names. This can be caused by recompiling some, but not all, of the packages linked to the old shared library after
the package providing the shared library is upgraded. To avoid the issue, users will need to rebuild every package
linked to a shared library with an updated revision (e.g. libfoo.so.2 to libfoo.so.3) as soon as possible.

• If a package containing a shared library is updated, and the name of the library doesn't change, but the version
number of the library file decreases (for example, the library is still named libfoo.so.1, but the name of the library
file is changed from libfoo.so.1.25 to libfoo.so.1.24), you should remove the library file from the previously
installed version (libfoo.so.1.25 in this case). Otherwise, a ldconfig command (invoked by yourself from the

91

https://www.linuxfromscratch.org/hints/downloads/files/

Linux From Scratch - Version 12.0-systemd

command line, or by the installation of some package) will reset the symlink libfoo.so.1 to point to the old library
file because it seems to be a “newer” version; its version number is larger. This situation may arise if you have to
downgrade a package, or if the authors change the versioning scheme for library files.

• If a package containing a shared library is updated, and the name of the library doesn't change, but a severe issue
(especially, a security vulnerability) is fixed, all running programs linked to the shared library should be restarted.
The following command, run as root after the update is complete, will list which processes are using the old
versions of those libraries (replace libfoo with the name of the library):

grep -l 'libfoo.*deleted' /proc/*/maps | tr -cd 0-9\\n | xargs -r ps u

If OpenSSH is being used to access the system and it is linked to the updated library, you must restart the sshd
service, then logout, login again, and run the preceding command again to confirm that nothing is still using the
deleted libraries.

If the systemd daemon (running as PID 1) is linked to the updated library, you can restart it without rebooting by
running systemctl daemon-reexec as the root user.

• If an executable program or a shared library is overwritten, the processes using the code or data in that program
or library may crash. The correct way to update a program or a shared library without causing the process to
crash is to remove it first, then install the new version. The install command provided by coreutils has already
implemented this, and most packages use that command to install binary files and libraries. This means that you
won't be troubled by this issue most of the time. However, the install process of some packages (notably Mozilla
JS in BLFS) just overwrites the file if it exists; this causes a crash. So it's safer to save your work and close
unneeded running processes before updating a package.

8.2.2. Package Management Techniques
The following are some common package management techniques. Before making a decision on a package manager,
do some research on the various techniques, particularly the drawbacks of each particular scheme.

8.2.2.1. It is All in My Head!

Yes, this is a package management technique. Some folks do not need a package manager because they know the
packages intimately and know which files are installed by each package. Some users also do not need any package
management because they plan on rebuilding the entire system whenever a package is changed.

8.2.2.2. Install in Separate Directories

This is a simplistic package management technique that does not need a special program to manage the packages. Each
package is installed in a separate directory. For example, package foo-1.1 is installed in /usr/pkg/foo-1.1 and a symlink
is made from /usr/pkg/foo to /usr/pkg/foo-1.1. When a new version foo-1.2 comes along, it is installed in /usr/pkg/
foo-1.2 and the previous symlink is replaced by a symlink to the new version.

Environment variables such as PATH, LD_LIBRARY_PATH, MANPATH, INFOPATH and CPPFLAGS need to be expanded to include
/usr/pkg/foo. If you install more than a few packages, this scheme becomes unmanageable.

8.2.2.3. Symlink Style Package Management

This is a variation of the previous package management technique. Each package is installed as in the previous scheme.
But instead of making the symlink via a generic package name, each file is symlinked into the /usr hierarchy. This
removes the need to expand the environment variables. Though the symlinks can be created by the user, many package
managers use this approach, and automate the creation of the symlinks. A few of the popular ones include Stow, Epkg,
Graft, and Depot.

92

Linux From Scratch - Version 12.0-systemd

The installation script needs to be fooled, so the package thinks it is installed in /usr though in reality it is installed in
the /usr/pkg hierarchy. Installing in this manner is not usually a trivial task. For example, suppose you are installing a
package libfoo-1.1. The following instructions may not install the package properly:

./configure --prefix=/usr/pkg/libfoo/1.1
make
make install

The installation will work, but the dependent packages may not link to libfoo as you would expect. If you compile a
package that links against libfoo, you may notice that it is linked to /usr/pkg/libfoo/1.1/lib/libfoo.so.1 instead of /
usr/lib/libfoo.so.1 as you would expect. The correct approach is to use the DESTDIR variable to direct the installation.
This approach works as follows:

./configure --prefix=/usr
make
make DESTDIR=/usr/pkg/libfoo/1.1 install

Most packages support this approach, but there are some which do not. For the non-compliant packages, you may either
need to install the package manually, or you may find that it is easier to install some problematic packages into /opt.

8.2.2.4. Timestamp Based

In this technique, a file is timestamped before the installation of the package. After the installation, a simple use of
the find command with the appropriate options can generate a log of all the files installed after the timestamp file was
created. A package manager that uses this approach is install-log.

Though this scheme has the advantage of being simple, it has two drawbacks. If, during installation, the files are
installed with any timestamp other than the current time, those files will not be tracked by the package manager. Also,
this scheme can only be used when packages are installed one at a time. The logs are not reliable if two packages are
installed simultaneously from two different consoles.

8.2.2.5. Tracing Installation Scripts

In this approach, the commands that the installation scripts perform are recorded. There are two techniques that one
can use:

The LD_PRELOAD environment variable can be set to point to a library to be preloaded before installation. During
installation, this library tracks the packages that are being installed by attaching itself to various executables such as
cp, install, mv and tracking the system calls that modify the filesystem. For this approach to work, all the executables
need to be dynamically linked without the suid or sgid bit. Preloading the library may cause some unwanted side-effects
during installation. Therefore, it's a good idea to perform some tests to ensure that the package manager does not break
anything, and that it logs all the appropriate files.

Another technique is to use strace, which logs all the system calls made during the execution of the installation scripts.

8.2.2.6. Creating Package Archives

In this scheme, the package installation is faked into a separate tree as previously described in the symlink style package
management section. After the installation, a package archive is created using the installed files. This archive is then
used to install the package on the local machine or even on other machines.

This approach is used by most of the package managers found in the commercial distributions. Examples of package
managers that follow this approach are RPM (which, incidentally, is required by the Linux Standard Base Specification),
pkg-utils, Debian's apt, and Gentoo's Portage system. A hint describing how to adopt this style of package management
for LFS systems is located at https://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt.

93

https://refspecs.linuxfoundation.org/lsb.shtml
https://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt

Linux From Scratch - Version 12.0-systemd

The creation of package files that include dependency information is complex, and beyond the scope of LFS.

Slackware uses a tar-based system for package archives. This system purposely does not handle package dependencies
as more complex package managers do. For details of Slackware package management, see https://www.slackbook.
org/html/package-management.html.

8.2.2.7. User Based Management

This scheme, unique to LFS, was devised by Matthias Benkmann, and is available from the Hints Project. In this
scheme, each package is installed as a separate user into the standard locations. Files belonging to a package are easily
identified by checking the user ID. The features and shortcomings of this approach are too complex to describe in this
section. For the details please see the hint at https://www.linuxfromscratch.org/hints/downloads/files/more_control_
and_pkg_man.txt.

8.2.3. Deploying LFS on Multiple Systems
One of the advantages of an LFS system is that there are no files that depend on the position of files on a disk system.
Cloning an LFS build to another computer with the same architecture as the base system is as simple as using tar on
the LFS partition that contains the root directory (about 900MB uncompressed for a basic LFS build), copying that
file via network transfer or CD-ROM / USB stick to the new system, and expanding it. After that, a few configuration
files will have to be changed. Configuration files that may need to be updated include: /etc/hosts, /etc/fstab, /etc/
passwd, /etc/group, /etc/shadow, and /etc/ld.so.conf.

A custom kernel may be needed for the new system, depending on differences in system hardware and the original
kernel configuration.

Note

There have been some reports of issues when copying between similar but not identical architectures. For
instance, the instruction set for an Intel system is not identical with the AMD processor's instructions, and
later versions of some processors may provide instructions that are unavailable with earlier versions.

Finally, the new system has to be made bootable via Section 10.4, “Using GRUB to Set Up the Boot Process”.

94

https://www.slackbook.org/html/package-management.html
https://www.slackbook.org/html/package-management.html
https://www.linuxfromscratch.org/hints/downloads/files/
https://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt
https://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt

Linux From Scratch - Version 12.0-systemd

8.3. Man-pages-6.05.01
The Man-pages package contains over 2,400 man pages.

Approximate build time: less than 0.1 SBU
Required disk space: 33 MB

8.3.1. Installation of Man-pages
Remove two man pages for password hashing functions. Libxcrypt will provide a better version of these man pages:

rm -v man3/crypt*

Install Man-pages by running:

make prefix=/usr install

8.3.2. Contents of Man-pages
Installed files: various man pages

Short Descriptions

man pages Describe C programming language functions, important device files, and significant configuration files

95

Linux From Scratch - Version 12.0-systemd

8.4. Iana-Etc-20230810
The Iana-Etc package provides data for network services and protocols.

Approximate build time: less than 0.1 SBU
Required disk space: 4.8 MB

8.4.1. Installation of Iana-Etc
For this package, we only need to copy the files into place:

cp services protocols /etc

8.4.2. Contents of Iana-Etc
Installed files: /etc/protocols and /etc/services

Short Descriptions

/etc/protocols Describes the various DARPA Internet protocols that are available from the TCP/IP subsystem

/etc/services Provides a mapping between friendly textual names for internet services, and their underlying
assigned port numbers and protocol types

96

Linux From Scratch - Version 12.0-systemd

8.5. Glibc-2.38
The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching
directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

Approximate build time: 11 SBU
Required disk space: 3.0 GB

8.5.1. Installation of Glibc
Some of the Glibc programs use the non-FHS compliant /var/db directory to store their runtime data. Apply the
following patch to make such programs store their runtime data in the FHS-compliant locations:

patch -Np1 -i ../glibc-2.38-fhs-1.patch

Now fix a regression causing the posix_memalign() function to be very slow in some conditions:

patch -Np1 -i ../glibc-2.38-memalign_fix-1.patch

The Glibc documentation recommends building Glibc in a dedicated build directory:

mkdir -v build
cd build

Ensure that the ldconfig and sln utilities will be installed into /usr/sbin:

echo "rootsbindir=/usr/sbin" > configparms

Prepare Glibc for compilation:

../configure --prefix=/usr \
 --disable-werror \
 --enable-kernel=4.14 \
 --enable-stack-protector=strong \
 --with-headers=/usr/include \
 libc_cv_slibdir=/usr/lib

The meaning of the configure options:

--disable-werror

This option disables the -Werror option passed to GCC. This is necessary for running the test suite.

--enable-kernel=4.14

This option tells the build system that this Glibc may be used with kernels as old as 4.14. This means generating
workarounds in case a system call introduced in a later version cannot be used.

--enable-stack-protector=strong

This option increases system security by adding extra code to check for buffer overflows, such as stack smashing
attacks.

--with-headers=/usr/include

This option tells the build system where to find the kernel API headers.

libc_cv_slibdir=/usr/lib

This variable sets the correct library for all systems. We do not want lib64 to be used.

Compile the package:

make

97

Linux From Scratch - Version 12.0-systemd

Important

In this section, the test suite for Glibc is considered critical. Do not skip it under any circumstance.

Generally a few tests do not pass. The test failures listed below are usually safe to ignore.

make check

You may see some test failures. The Glibc test suite is somewhat dependent on the host system. A few failures out of
over 5000 tests can generally be ignored. This is a list of the most common issues seen for recent versions of LFS:

• io/tst-lchmod is known to fail in the LFS chroot environment.

• The stdlib/tst-arc4random-thread test is known to fail if the host kernel is relatively old.

• Some tests, for example nss/tst-nss-files-hosts-multi, are known to fail on relatively slow systems due to an internal
timeout.

• Additionally, some tests may fail with a relatively old CPU model or host kernel version.

Though it is a harmless message, the install stage of Glibc will complain about the absence of /etc/ld.so.conf. Prevent
this warning with:

touch /etc/ld.so.conf

Fix the Makefile to skip an outdated sanity check that fails with a modern Glibc configuration:

sed '/test-installation/s@$(PERL)@echo not running@' -i ../Makefile

Install the package:

make install

Fix a hardcoded path to the executable loader in the ldd script:

sed '/RTLDLIST=/s@/usr@@g' -i /usr/bin/ldd

Install the configuration file and runtime directory for nscd:

cp -v ../nscd/nscd.conf /etc/nscd.conf
mkdir -pv /var/cache/nscd

Install the systemd support files for nscd:

install -v -Dm644 ../nscd/nscd.tmpfiles /usr/lib/tmpfiles.d/nscd.conf
install -v -Dm644 ../nscd/nscd.service /usr/lib/systemd/system/nscd.service

Next, install the locales that can make the system respond in a different language. None of these locales are required,
but if some of them are missing, the test suites of some packages will skip important test cases.

98

Linux From Scratch - Version 12.0-systemd

Individual locales can be installed using the localedef program. E.g., the second localedef command below combines
the /usr/share/i18n/locales/cs_CZ charset-independent locale definition with the /usr/share/i18n/charmaps/UTF-8.
gz charmap definition and appends the result to the /usr/lib/locale/locale-archive file. The following instructions
will install the minimum set of locales necessary for the optimal coverage of tests:

mkdir -pv /usr/lib/locale
localedef -i POSIX -f UTF-8 C.UTF-8 2> /dev/null || true
localedef -i cs_CZ -f UTF-8 cs_CZ.UTF-8
localedef -i de_DE -f ISO-8859-1 de_DE
localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro
localedef -i de_DE -f UTF-8 de_DE.UTF-8
localedef -i el_GR -f ISO-8859-7 el_GR
localedef -i en_GB -f ISO-8859-1 en_GB
localedef -i en_GB -f UTF-8 en_GB.UTF-8
localedef -i en_HK -f ISO-8859-1 en_HK
localedef -i en_PH -f ISO-8859-1 en_PH
localedef -i en_US -f ISO-8859-1 en_US
localedef -i en_US -f UTF-8 en_US.UTF-8
localedef -i es_ES -f ISO-8859-15 es_ES@euro
localedef -i es_MX -f ISO-8859-1 es_MX
localedef -i fa_IR -f UTF-8 fa_IR
localedef -i fr_FR -f ISO-8859-1 fr_FR
localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro
localedef -i fr_FR -f UTF-8 fr_FR.UTF-8
localedef -i is_IS -f ISO-8859-1 is_IS
localedef -i is_IS -f UTF-8 is_IS.UTF-8
localedef -i it_IT -f ISO-8859-1 it_IT
localedef -i it_IT -f ISO-8859-15 it_IT@euro
localedef -i it_IT -f UTF-8 it_IT.UTF-8
localedef -i ja_JP -f EUC-JP ja_JP
localedef -i ja_JP -f SHIFT_JIS ja_JP.SJIS 2> /dev/null || true
localedef -i ja_JP -f UTF-8 ja_JP.UTF-8
localedef -i nl_NL@euro -f ISO-8859-15 nl_NL@euro
localedef -i ru_RU -f KOI8-R ru_RU.KOI8-R
localedef -i ru_RU -f UTF-8 ru_RU.UTF-8
localedef -i se_NO -f UTF-8 se_NO.UTF-8
localedef -i ta_IN -f UTF-8 ta_IN.UTF-8
localedef -i tr_TR -f UTF-8 tr_TR.UTF-8
localedef -i zh_CN -f GB18030 zh_CN.GB18030
localedef -i zh_HK -f BIG5-HKSCS zh_HK.BIG5-HKSCS
localedef -i zh_TW -f UTF-8 zh_TW.UTF-8

In addition, install the locale for your own country, language and character set.

Alternatively, install all the locales listed in the glibc-2.38/localedata/SUPPORTED file (it includes every locale listed
above and many more) at once with the following time-consuming command:

make localedata/install-locales

Then use the localedef command to create and install locales not listed in the glibc-2.38/localedata/SUPPORTED file
when you need them. For instance, the following two locales are needed for some tests later in this chapter:

localedef -i POSIX -f UTF-8 C.UTF-8 2> /dev/null || true
localedef -i ja_JP -f SHIFT_JIS ja_JP.SJIS 2> /dev/null || true

Note

Glibc now uses libidn2 when resolving internationalized domain names. This is a run time dependency. If
this capability is needed, the instructions for installing libidn2 are in the BLFS libidn2 page.

99

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libidn2.html

Linux From Scratch - Version 12.0-systemd

8.5.2. Configuring Glibc

8.5.2.1. Adding nsswitch.conf

The /etc/nsswitch.conf file needs to be created because the Glibc defaults do not work well in a networked
environment.

Create a new file /etc/nsswitch.conf by running the following:

cat > /etc/nsswitch.conf << "EOF"
Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: files
services: files
ethers: files
rpc: files

End /etc/nsswitch.conf
EOF

8.5.2.2. Adding Time Zone Data

Install and set up the time zone data with the following:

tar -xf ../../tzdata2023c.tar.gz

ZONEINFO=/usr/share/zoneinfo
mkdir -pv $ZONEINFO/{posix,right}

for tz in etcetera southamerica northamerica europe africa antarctica \
 asia australasia backward; do
 zic -L /dev/null -d $ZONEINFO ${tz}
 zic -L /dev/null -d $ZONEINFO/posix ${tz}
 zic -L leapseconds -d $ZONEINFO/right ${tz}
done

cp -v zone.tab zone1970.tab iso3166.tab $ZONEINFO
zic -d $ZONEINFO -p America/New_York
unset ZONEINFO

The meaning of the zic commands:

zic -L /dev/null ...

This creates posix time zones without any leap seconds. It is conventional to put these in both zoneinfo and
zoneinfo/posix. It is necessary to put the POSIX time zones in zoneinfo, otherwise various test suites will report
errors. On an embedded system, where space is tight and you do not intend to ever update the time zones, you could
save 1.9 MB by not using the posix directory, but some applications or test suites might produce some failures.

zic -L leapseconds ...

This creates right time zones, including leap seconds. On an embedded system, where space is tight and you do
not intend to ever update the time zones, or care about the correct time, you could save 1.9MB by omitting the
right directory.

100

Linux From Scratch - Version 12.0-systemd

zic ... -p ...

This creates the posixrules file. We use New York because POSIX requires the daylight savings time rules to
be in accordance with US rules.

One way to determine the local time zone is to run the following script:

tzselect

After answering a few questions about the location, the script will output the name of the time zone (e.g., America/
Edmonton). There are also some other possible time zones listed in /usr/share/zoneinfo such as Canada/Eastern or
EST5EDT that are not identified by the script but can be used.

Then create the /etc/localtime file by running:

ln -sfv /usr/share/zoneinfo/<xxx> /etc/localtime

Replace <xxx> with the name of the time zone selected (e.g., Canada/Eastern).

8.5.2.3. Configuring the Dynamic Loader

By default, the dynamic loader (/lib/ld-linux.so.2) searches through /usr/lib for dynamic libraries that are needed
by programs as they are run. However, if there are libraries in directories other than /usr/lib, these need to be added
to the /etc/ld.so.conf file in order for the dynamic loader to find them. Two directories that are commonly known to
contain additional libraries are /usr/local/lib and /opt/lib, so add those directories to the dynamic loader's search
path.

Create a new file /etc/ld.so.conf by running the following:

cat > /etc/ld.so.conf << "EOF"
Begin /etc/ld.so.conf
/usr/local/lib
/opt/lib

EOF

If desired, the dynamic loader can also search a directory and include the contents of files found there. Generally the
files in this include directory are one line specifying the desired library path. To add this capability run the following
commands:

cat >> /etc/ld.so.conf << "EOF"
Add an include directory
include /etc/ld.so.conf.d/*.conf

EOF
mkdir -pv /etc/ld.so.conf.d

101

Linux From Scratch - Version 12.0-systemd

8.5.3. Contents of Glibc
Installed programs: gencat, getconf, getent, iconv, iconvconfig, ldconfig, ldd, lddlibc4, ld.so (symlink

to ld-linux-x86-64.so.2 or ld-linux.so.2), locale, localedef, makedb, mtrace, nscd,
pcprofiledump, pldd, sln, sotruss, sprof, tzselect, xtrace, zdump, and zic

Installed libraries: ld-linux-x86-64.so.2, ld-linux.so.2, libBrokenLocale.{a,so}, libanl.{a,so}, libc.{a,so},
libc_nonshared.a, libc_malloc_debug.so, libdl.{a,so.2}, libg.a, libm.{a,so}, libmcheck.a,
libmemusage.so, libmvec.{a,so}, libnsl.so.1, libnss_compat.so, libnss_dns.so,
libnss_files.so, libnss_hesiod.so, libpcprofile.so, libpthread.{a,so.0}, libresolv.{a,so},
librt.{a,so.1}, libthread_db.so, and libutil.{a,so.1}

Installed directories: /usr/include/arpa, /usr/include/bits, /usr/include/gnu, /usr/include/net, /usr/include/
netash, /usr/include/netatalk, /usr/include/netax25, /usr/include/neteconet, /usr/include/
netinet, /usr/include/netipx, /usr/include/netiucv, /usr/include/netpacket, /usr/include/
netrom, /usr/include/netrose, /usr/include/nfs, /usr/include/protocols, /usr/include/rpc, /
usr/include/sys, /usr/lib/audit, /usr/lib/gconv, /usr/lib/locale, /usr/libexec/getconf, /usr/
share/i18n, /usr/share/zoneinfo, /var/cache/nscd, and /var/lib/nss_db

Short Descriptions

gencat Generates message catalogues

getconf Displays the system configuration values for file system specific variables

getent Gets entries from an administrative database

iconv Performs character set conversion

iconvconfig Creates fastloading iconv module configuration files

ldconfig Configures the dynamic linker runtime bindings

ldd Reports which shared libraries are required by each given program or shared library

lddlibc4 Assists ldd with object files. It does not exist on newer architectures like x86_64

locale Prints various information about the current locale

localedef Compiles locale specifications

makedb Creates a simple database from textual input

mtrace Reads and interprets a memory trace file and displays a summary in human-readable format

nscd A daemon that provides a cache for the most common name service requests

pcprofiledump Dump information generated by PC profiling

pldd Lists dynamic shared objects used by running processes

sln A statically linked ln program

sotruss Traces shared library procedure calls of a specified command

sprof Reads and displays shared object profiling data

tzselect Asks the user about the location of the system and reports the corresponding time zone
description

xtrace Traces the execution of a program by printing the currently executed function

zdump The time zone dumper

zic The time zone compiler

102

Linux From Scratch - Version 12.0-systemd

ld-*.so The helper program for shared library executables

libBrokenLocale Used internally by Glibc as a gross hack to get broken programs (e.g., some Motif
applications) running. See comments in glibc-2.38/locale/broken_cur_max.c for more
information

libanl Dummy library containing no functions. Previously was the asynchronous name lookup
library, whose functions are now in libc

libc The main C library

libc_malloc_debug Turns on memory allocation checking when preloaded

libdl Dummy library containing no functions. Previously was the dynamic linking interface
library, whose functions are now in libc

libg Dummy library containing no functions. Previously was a runtime library for g++

libm The mathematical library

libmvec The vector math library, linked in as needed when libm is used

libmcheck Turns on memory allocation checking when linked to

libmemusage Used by memusage to help collect information about the memory usage of a program

libnsl The network services library, now deprecated

libnss_* The Name Service Switch modules, containing functions for resolving host names, user
names, group names, aliases, services, protocols, etc. Loaded by libc according to the
configuration in /etc/nsswitch.conf

libpcprofile Can be preloaded to PC profile an executable

libpthread Dummy library containing no functions. Previously contained functions providing most of
the interfaces specified by the POSIX.1c Threads Extensions and the semaphore interfaces
specified by the POSIX.1b Real-time Extensions, now the functions are in libc

libresolv Contains functions for creating, sending, and interpreting packets to the Internet domain
name servers

librt Contains functions providing most of the interfaces specified by the POSIX.1b Real-time
Extensions

libthread_db Contains functions useful for building debuggers for multi-threaded programs

libutil Dummy library containing no functions. Previously contained code for “standard”
functions used in many different Unix utilities. These functions are now in libc

103

Linux From Scratch - Version 12.0-systemd

8.6. Zlib-1.2.13
The Zlib package contains compression and decompression routines used by some programs.

Approximate build time: less than 0.1 SBU
Required disk space: 6.2 MB

8.6.1. Installation of Zlib
Prepare Zlib for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Remove a useless static library:

rm -fv /usr/lib/libz.a

8.6.2. Contents of Zlib
Installed libraries: libz.so

Short Descriptions

libz Contains compression and decompression functions used by some programs

104

Linux From Scratch - Version 12.0-systemd

8.7. Bzip2-1.0.8
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2
yields a much better compression percentage than with the traditional gzip.

Approximate build time: less than 0.1 SBU
Required disk space: 7.2 MB

8.7.1. Installation of Bzip2

Apply a patch that will install the documentation for this package:

patch -Np1 -i ../bzip2-1.0.8-install_docs-1.patch

The following command ensures installation of symbolic links are relative:

sed -i 's@\(ln -s -f \)$(PREFIX)/bin/@\1@' Makefile

Ensure the man pages are installed into the correct location:

sed -i "s@(PREFIX)/man@(PREFIX)/share/man@g" Makefile

Prepare Bzip2 for compilation with:

make -f Makefile-libbz2_so
make clean

The meaning of the make parameter:

-f Makefile-libbz2_so

This will cause Bzip2 to be built using a different Makefile file, in this case the Makefile-libbz2_so file, which
creates a dynamic libbz2.so library and links the Bzip2 utilities against it.

Compile and test the package:

make

Install the programs:

make PREFIX=/usr install

Install the shared library:

cp -av libbz2.so.* /usr/lib
ln -sv libbz2.so.1.0.8 /usr/lib/libbz2.so

Install the shared bzip2 binary into the /usr/bin directory, and replace two copies of bzip2 with symlinks:

cp -v bzip2-shared /usr/bin/bzip2
for i in /usr/bin/{bzcat,bunzip2}; do
 ln -sfv bzip2 $i
done

Remove a useless static library:

rm -fv /usr/lib/libbz2.a

105

Linux From Scratch - Version 12.0-systemd

8.7.2. Contents of Bzip2
Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp (link to bzdiff), bzdiff, bzegrep (link

to bzgrep), bzfgrep (link to bzgrep), bzgrep, bzip2, bzip2recover, bzless (link to bzmore),
and bzmore

Installed libraries: libbz2.so
Installed directory: /usr/share/doc/bzip2-1.0.8

Short Descriptions

bunzip2 Decompresses bzipped files

bzcat Decompresses to standard output

bzcmp Runs cmp on bzipped files

bzdiff Runs diff on bzipped files

bzegrep Runs egrep on bzipped files

bzfgrep Runs fgrep on bzipped files

bzgrep Runs grep on bzipped files

bzip2 Compresses files using the Burrows-Wheeler block sorting text compression algorithm with
Huffman coding; the compression rate is better than that achieved by more conventional
compressors using “Lempel-Ziv” algorithms, like gzip

bzip2recover Tries to recover data from damaged bzipped files

bzless Runs less on bzipped files

bzmore Runs more on bzipped files

libbz2 The library implementing lossless, block-sorting data compression, using the Burrows-Wheeler
algorithm

106

Linux From Scratch - Version 12.0-systemd

8.8. Xz-5.4.4
The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma and
the newer xz compression formats. Compressing text files with xz yields a better compression percentage than with
the traditional gzip or bzip2 commands.

Approximate build time: 0.1 SBU
Required disk space: 24 MB

8.8.1. Installation of Xz
Prepare Xz for compilation with:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/xz-5.4.4

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.8.2. Contents of Xz
Installed programs: lzcat (link to xz), lzcmp (link to xzdiff), lzdiff (link to xzdiff), lzegrep (link to xzgrep),

lzfgrep (link to xzgrep), lzgrep (link to xzgrep), lzless (link to xzless), lzma (link to xz),
lzmadec, lzmainfo, lzmore (link to xzmore), unlzma (link to xz), unxz (link to xz), xz,
xzcat (link to xz), xzcmp (link to xzdiff), xzdec, xzdiff, xzegrep (link to xzgrep), xzfgrep
(link to xzgrep), xzgrep, xzless, and xzmore

Installed libraries: liblzma.so
Installed directories: /usr/include/lzma and /usr/share/doc/xz-5.4.4

Short Descriptions

lzcat Decompresses to standard output

lzcmp Runs cmp on LZMA compressed files

lzdiff Runs diff on LZMA compressed files

lzegrep Runs egrep on LZMA compressed files

lzfgrep Runs fgrep on LZMA compressed files

lzgrep Runs grep on LZMA compressed files

lzless Runs less on LZMA compressed files

lzma Compresses or decompresses files using the LZMA format

lzmadec A small and fast decoder for LZMA compressed files

lzmainfo Shows information stored in the LZMA compressed file header

107

Linux From Scratch - Version 12.0-systemd

lzmore Runs more on LZMA compressed files

unlzma Decompresses files using the LZMA format

unxz Decompresses files using the XZ format

xz Compresses or decompresses files using the XZ format

xzcat Decompresses to standard output

xzcmp Runs cmp on XZ compressed files

xzdec A small and fast decoder for XZ compressed files

xzdiff Runs diff on XZ compressed files

xzegrep Runs egrep on XZ compressed files

xzfgrep Runs fgrep on XZ compressed files

xzgrep Runs grep on XZ compressed files

xzless Runs less on XZ compressed files

xzmore Runs more on XZ compressed files

liblzma The library implementing lossless, block-sorting data compression, using the Lempel-Ziv-Markov chain
algorithm

108

Linux From Scratch - Version 12.0-systemd

8.9. Zstd-1.5.5
Zstandard is a real-time compression algorithm, providing high compression ratios. It offers a very wide range of
compression / speed trade-offs, while being backed by a very fast decoder.

Approximate build time: 0.4 SBU
Required disk space: 77 MB

8.9.1. Installation of Zstd
Compile the package:

make prefix=/usr

Note

In the test output there are several places that indicate 'failed'. These are expected and only 'FAIL' is an actual
test failure. There should be no test failures.

To test the results, issue:

make check

Install the package:

make prefix=/usr install

Remove the static library:

rm -v /usr/lib/libzstd.a

8.9.2. Contents of Zstd
Installed programs: zstd, zstdcat (link to zstd), zstdgrep, zstdless, zstdmt (link to zstd), and unzstd (link to

zstd)
Installed library: libzstd.so

Short Descriptions

zstd Compresses or decompresses files using the ZSTD format

zstdgrep Runs grep on ZSTD compressed files

zstdless Runs less on ZSTD compressed files

libzstd The library implementing lossless data compression, using the ZSTD algorithm

109

Linux From Scratch - Version 12.0-systemd

8.10. File-5.45
The File package contains a utility for determining the type of a given file or files.

Approximate build time: less than 0.1 SBU
Required disk space: 17 MB

8.10.1. Installation of File
Prepare File for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.10.2. Contents of File
Installed programs: file
Installed library: libmagic.so

Short Descriptions

file Tries to classify each given file; it does this by performing several tests—file system tests, magic number
tests, and language tests

libmagic Contains routines for magic number recognition, used by the file program

110

Linux From Scratch - Version 12.0-systemd

8.11. Readline-8.2
The Readline package is a set of libraries that offer command-line editing and history capabilities.

Approximate build time: less than 0.1 SBU
Required disk space: 16 MB

8.11.1. Installation of Readline
Reinstalling Readline will cause the old libraries to be moved to <libraryname>.old. While this is normally not a
problem, in some cases it can trigger a linking bug in ldconfig. This can be avoided by issuing the following two seds:

sed -i '/MV.*old/d' Makefile.in
sed -i '/{OLDSUFF}/c:' support/shlib-install

Now fix a problem identified upstream:

patch -Np1 -i ../readline-8.2-upstream_fix-1.patch

Prepare Readline for compilation:

./configure --prefix=/usr \
 --disable-static \
 --with-curses \
 --docdir=/usr/share/doc/readline-8.2

The meaning of the new configure option:

--with-curses

This option tells Readline that it can find the termcap library functions in the curses library, not a separate termcap
library. This will generate the correct readline.pc file.

Compile the package:

make SHLIB_LIBS="-lncursesw"

The meaning of the make option:

SHLIB_LIBS="-lncursesw"

This option forces Readline to link against the libncursesw library.

This package does not come with a test suite.

Install the package:

make SHLIB_LIBS="-lncursesw" install

If desired, install the documentation:

install -v -m644 doc/*.{ps,pdf,html,dvi} /usr/share/doc/readline-8.2

8.11.2. Contents of Readline
Installed libraries: libhistory.so and libreadline.so
Installed directories: /usr/include/readline and /usr/share/doc/readline-8.2

Short Descriptions

libhistory Provides a consistent user interface for recalling lines of history

111

Linux From Scratch - Version 12.0-systemd

libreadline Provides a set of commands for manipulating text entered in an interactive session of a program

112

Linux From Scratch - Version 12.0-systemd

8.12. M4-1.4.19
The M4 package contains a macro processor.

Approximate build time: 0.3 SBU
Required disk space: 49 MB

8.12.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.12.2. Contents of M4
Installed program: m4

Short Descriptions

m4 Copies the given files while expanding the macros that they contain. These macros are either built-in or user-
defined and can take any number of arguments. Besides performing macro expansion, m4 has built-in functions
for including named files, running Unix commands, performing integer arithmetic, manipulating text, recursion,
etc. The m4 program can be used either as a front end to a compiler or as a macro processor in its own right

113

Linux From Scratch - Version 12.0-systemd

8.13. Bc-6.6.0
The Bc package contains an arbitrary precision numeric processing language.

Approximate build time: less than 0.1 SBU
Required disk space: 7.7 MB

8.13.1. Installation of Bc
Prepare Bc for compilation:

CC=gcc ./configure --prefix=/usr -G -O3 -r

The meaning of the configure options:

CC=gcc

This parameter specifies the compiler to use.

-G

Omit parts of the test suite that won't work until the bc program has been installed.

-O3

Specify the optimization to use.

-r

Enable the use of Readline to improve the line editing feature of bc.

Compile the package:

make

To test bc, run:

make test

Install the package:

make install

8.13.2. Contents of Bc
Installed programs: bc and dc

Short Descriptions

bc A command line calculator

dc A reverse-polish command line calculator

114

Linux From Scratch - Version 12.0-systemd

8.14. Flex-2.6.4
The Flex package contains a utility for generating programs that recognize patterns in text.

Approximate build time: 0.1 SBU
Required disk space: 33 MB

8.14.1. Installation of Flex
Prepare Flex for compilation:

./configure --prefix=/usr \
 --docdir=/usr/share/doc/flex-2.6.4 \
 --disable-static

Compile the package:

make

To test the results (about 0.5 SBU), issue:

make check

Install the package:

make install

A few programs do not know about flex yet and try to run its predecessor, lex. To support those programs, create a
symbolic link named lex that runs flex in lex emulation mode, and also create the man page of lex as a symlink:

ln -sv flex /usr/bin/lex
ln -sv flex.1 /usr/share/man/man1/lex.1

8.14.2. Contents of Flex
Installed programs: flex, flex++ (link to flex), and lex (link to flex)
Installed libraries: libfl.so
Installed directory: /usr/share/doc/flex-2.6.4

Short Descriptions

flex A tool for generating programs that recognize patterns in text; it allows for the versatility to specify the rules
for pattern-finding, eradicating the need to develop a specialized program

flex++ An extension of flex, is used for generating C++ code and classes. It is a symbolic link to flex

lex A symbolic link that runs flex in lex emulation mode

libfl The flex library

115

Linux From Scratch - Version 12.0-systemd

8.15. Tcl-8.6.13
The Tcl package contains the Tool Command Language, a robust general-purpose scripting language. The Expect
package is written in Tcl (pronounced "tickle").

Approximate build time: 2.7 SBU
Required disk space: 89 MB

8.15.1. Installation of Tcl
This package and the next two (Expect and DejaGNU) are installed to support running the test suites for Binutils, GCC
and other packages. Installing three packages for testing purposes may seem excessive, but it is very reassuring, if not
essential, to know that the most important tools are working properly.

Prepare Tcl for compilation:

SRCDIR=$(pwd)
cd unix
./configure --prefix=/usr \
 --mandir=/usr/share/man

Build the package:

make

sed -e "s|$SRCDIR/unix|/usr/lib|" \
 -e "s|$SRCDIR|/usr/include|" \
 -i tclConfig.sh

sed -e "s|$SRCDIR/unix/pkgs/tdbc1.1.5|/usr/lib/tdbc1.1.5|" \
 -e "s|$SRCDIR/pkgs/tdbc1.1.5/generic|/usr/include|" \
 -e "s|$SRCDIR/pkgs/tdbc1.1.5/library|/usr/lib/tcl8.6|" \
 -e "s|$SRCDIR/pkgs/tdbc1.1.5|/usr/include|" \
 -i pkgs/tdbc1.1.5/tdbcConfig.sh

sed -e "s|$SRCDIR/unix/pkgs/itcl4.2.3|/usr/lib/itcl4.2.3|" \
 -e "s|$SRCDIR/pkgs/itcl4.2.3/generic|/usr/include|" \
 -e "s|$SRCDIR/pkgs/itcl4.2.3|/usr/include|" \
 -i pkgs/itcl4.2.3/itclConfig.sh

unset SRCDIR

The various “sed” instructions after the “make” command remove references to the build directory from the
configuration files and replace them with the install directory. This is not mandatory for the remainder of LFS, but may
be needed if a package built later uses Tcl.

To test the results, issue:

make test

Install the package:

make install

Make the installed library writable so debugging symbols can be removed later:

chmod -v u+w /usr/lib/libtcl8.6.so

Install Tcl's headers. The next package, Expect, requires them.

make install-private-headers

116

Linux From Scratch - Version 12.0-systemd

Now make a necessary symbolic link:

ln -sfv tclsh8.6 /usr/bin/tclsh

Rename a man page that conflicts with a Perl man page:

mv /usr/share/man/man3/{Thread,Tcl_Thread}.3

Optionally, install the documentation by issuing the following commands:

cd ..
tar -xf ../tcl8.6.13-html.tar.gz --strip-components=1
mkdir -v -p /usr/share/doc/tcl-8.6.13
cp -v -r ./html/* /usr/share/doc/tcl-8.6.13

8.15.2. Contents of Tcl
Installed programs: tclsh (link to tclsh8.6) and tclsh8.6
Installed library: libtcl8.6.so and libtclstub8.6.a

Short Descriptions

tclsh8.6 The Tcl command shell

tclsh A link to tclsh8.6

libtcl8.6.so The Tcl library

libtclstub8.6.a The Tcl Stub library

117

Linux From Scratch - Version 12.0-systemd

8.16. Expect-5.45.4
The Expect package contains tools for automating, via scripted dialogues, interactive applications such as telnet, ftp,
passwd, fsck, rlogin, and tip. Expect is also useful for testing these same applications as well as easing all sorts of
tasks that are prohibitively difficult with anything else. The DejaGnu framework is written in Expect.

Approximate build time: 0.2 SBU
Required disk space: 3.9 MB

8.16.1. Installation of Expect
Prepare Expect for compilation:

./configure --prefix=/usr \
 --with-tcl=/usr/lib \
 --enable-shared \
 --mandir=/usr/share/man \
 --with-tclinclude=/usr/include

The meaning of the configure options:

--with-tcl=/usr/lib

This parameter is needed to tell configure where the tclConfig.sh script is located.

--with-tclinclude=/usr/include

This explicitly tells Expect where to find Tcl's internal headers.

Build the package:

make

Important

The test suite for Expect is considered critical. Do not skip it under any circumstances.

To test the results, issue:

make test

If any test fails with the message “The system has no more ptys. Ask your system administrator to create more”,
it indicates you've not mounted the devpts file system correctly. You need to exit from the chroot environment, read
Section 7.3, “Preparing Virtual Kernel File Systems” again, and ensure the devpts file system (and other virtual kernel
file systems) mounted correctly. Then reenter the chroot environment following Section 7.4, “Entering the Chroot
Environment”. This issue needs to be resolved before continuing.

Install the package:

make install
ln -svf expect5.45.4/libexpect5.45.4.so /usr/lib

8.16.2. Contents of Expect
Installed program: expect
Installed library: libexpect5.45.4.so

Short Descriptions

expect Communicates with other interactive programs according to a script

118

Linux From Scratch - Version 12.0-systemd

libexpect-5.45.4.so Contains functions that allow Expect to be used as a Tcl extension or to be used directly
from C or C++ (without Tcl)

119

Linux From Scratch - Version 12.0-systemd

8.17. DejaGNU-1.6.3
The DejaGnu package contains a framework for running test suites on GNU tools. It is written in expect, which itself
uses Tcl (Tool Command Language).

Approximate build time: less than 0.1 SBU
Required disk space: 6.9 MB

8.17.1. Installation of DejaGNU
The upstream recommends building DejaGNU in a dedicated build directory:

mkdir -v build
cd build

Prepare DejaGNU for compilation:

../configure --prefix=/usr
makeinfo --html --no-split -o doc/dejagnu.html ../doc/dejagnu.texi
makeinfo --plaintext -o doc/dejagnu.txt ../doc/dejagnu.texi

Build and install the package:

make install
install -v -dm755 /usr/share/doc/dejagnu-1.6.3
install -v -m644 doc/dejagnu.{html,txt} /usr/share/doc/dejagnu-1.6.3

To test the results, issue:

make check

8.17.2. Contents of DejaGNU
Installed program: dejagnu and runtest

Short Descriptions

dejagnu DejaGNU auxiliary command launcher

runtest A wrapper script that locates the proper expect shell and then runs DejaGNU

120

Linux From Scratch - Version 12.0-systemd

8.18. Binutils-2.41
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 2.2 SBU
Required disk space: 2.7 GB

8.18.1. Installation of Binutils

The Binutils documentation recommends building Binutils in a dedicated build directory:

mkdir -v build
cd build

Prepare Binutils for compilation:

../configure --prefix=/usr \
 --sysconfdir=/etc \
 --enable-gold \
 --enable-ld=default \
 --enable-plugins \
 --enable-shared \
 --disable-werror \
 --enable-64-bit-bfd \
 --with-system-zlib

The meaning of the configure parameters:

--enable-gold

Build the gold linker and install it as ld.gold (alongside the default linker).

--enable-ld=default

Build the original bfd linker and install it as both ld (the default linker) and ld.bfd.

--enable-plugins

Enables plugin support for the linker.

--enable-64-bit-bfd

Enables 64-bit support (on hosts with narrower word sizes). May not be needed on 64-bit systems, but does no
harm.

--with-system-zlib

Use the installed zlib library instead of building the included version.

Compile the package:

make tooldir=/usr

The meaning of the make parameter:

tooldir=/usr

Normally, the tooldir (the directory where the executables will ultimately be located) is set to $(exec_prefix)/
$(target_alias). For example, x86_64 machines would expand that to /usr/x86_64-pc-linux-gnu. Because this
is a custom system, this target-specific directory in /usr is not required. $(exec_prefix)/$(target_alias) would
be used if the system were used to cross-compile (for example, compiling a package on an Intel machine that
generates code that can be executed on PowerPC machines).

121

Linux From Scratch - Version 12.0-systemd

Important

The test suite for Binutils in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make -k check

For a list of failed tests, run:

grep '^FAIL:' $(find -name '*.log')

Twelve tests fail in the gold test suite when the --enable-default-pie and --enable-default-ssp options are passed
to GCC.

Three tests in the gprofng suite are also known to fail.

Install the package:

make tooldir=/usr install

Remove useless static libraries:

rm -fv /usr/lib/lib{bfd,ctf,ctf-nobfd,gprofng,opcodes,sframe}.a

8.18.2. Contents of Binutils
Installed programs: addr2line, ar, as, c++filt, dwp, elfedit, gprof, gprofng, ld, ld.bfd, ld.gold, nm, objcopy,

objdump, ranlib, readelf, size, strings, and strip
Installed libraries: libbfd.so, libctf.so, libctf-nobfd.so, libgprofng.so, libopcodes.so, and libsframe.so
Installed directory: /usr/lib/ldscripts

Short Descriptions

addr2line Translates program addresses to file names and line numbers; given an address and the name of
an executable, it uses the debugging information in the executable to determine which source file
and line number are associated with the address

ar Creates, modifies, and extracts from archives

as An assembler that assembles the output of gcc into object files

c++filt Used by the linker to de-mangle C++ and Java symbols and to keep overloaded functions from
clashing

dwp The DWARF packaging utility

elfedit Updates the ELF headers of ELF files

gprof Displays call graph profile data

gprofng Gathers and analyzes performance data

ld A linker that combines a number of object and archive files into a single file, relocating their data
and tying up symbol references

ld.gold A cut down version of ld that only supports the elf object file format

ld.bfd A hard link to ld

nm Lists the symbols occurring in a given object file

122

Linux From Scratch - Version 12.0-systemd

objcopy Translates one type of object file into another

objdump Displays information about the given object file, with options controlling the particular information
to display; the information shown is useful to programmers who are working on the compilation
tools

ranlib Generates an index of the contents of an archive and stores it in the archive; the index lists all of
the symbols defined by archive members that are relocatable object files

readelf Displays information about ELF type binaries

size Lists the section sizes and the total size for the given object files

strings Outputs, for each given file, the sequences of printable characters that are of at least the specified
length (defaulting to four); for object files, it prints, by default, only the strings from the initializing
and loading sections while for other types of files, it scans the entire file

strip Discards symbols from object files

libbfd The Binary File Descriptor library

libctf The Compat ANSI-C Type Format debugging support library

libctf-nobfd A libctf variant which does not use libbfd functionality

libgprofng A library containing most routines used by gprofng

libopcodes A library for dealing with opcodes—the “readable text” versions of instructions for the processor;
it is used for building utilities like objdump

libsframe A library to support online backtracing using a simple unwinder

123

Linux From Scratch - Version 12.0-systemd

8.19. GMP-6.3.0
The GMP package contains math libraries. These have useful functions for arbitrary precision arithmetic.

Approximate build time: 0.3 SBU
Required disk space: 54 MB

8.19.1. Installation of GMP

Note
If you are building for 32-bit x86, but you have a CPU which is capable of running 64-bit code and you have
specified CFLAGS in the environment, the configure script will attempt to configure for 64-bits and fail. Avoid
this by invoking the configure command below with

ABI=32 ./configure ...

Note
The default settings of GMP produce libraries optimized for the host processor. If libraries suitable for
processors less capable than the host's CPU are desired, generic libraries can be created by appending the -
-host=none-linux-gnu option to the configure command.

Prepare GMP for compilation:

./configure --prefix=/usr \
 --enable-cxx \
 --disable-static \
 --docdir=/usr/share/doc/gmp-6.3.0

The meaning of the new configure options:

--enable-cxx

This parameter enables C++ support

--docdir=/usr/share/doc/gmp-6.3.0

This variable specifies the correct place for the documentation.

Compile the package and generate the HTML documentation:

make
make html

Important
The test suite for GMP in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make check 2>&1 | tee gmp-check-log

Caution
The code in gmp is highly optimized for the processor where it is built. Occasionally, the code that detects
the processor misidentifies the system capabilities and there will be errors in the tests or other applications
using the gmp libraries with the message "Illegal instruction". In this case, gmp should be reconfigured with
the option --host=none-linux-gnu and rebuilt.

124

Linux From Scratch - Version 12.0-systemd

Ensure that at least 199 tests in the test suite passed. Check the results by issuing the following command:

awk '/# PASS:/{total+=$3} ; END{print total}' gmp-check-log

Install the package and its documentation:

make install
make install-html

8.19.2. Contents of GMP
Installed Libraries: libgmp.so and libgmpxx.so
Installed directory: /usr/share/doc/gmp-6.3.0

Short Descriptions

libgmp Contains precision math functions

libgmpxx Contains C++ precision math functions

125

Linux From Scratch - Version 12.0-systemd

8.20. MPFR-4.2.0
The MPFR package contains functions for multiple precision math.

Approximate build time: 0.2 SBU
Required disk space: 43 MB

8.20.1. Installation of MPFR
Fix a test case based on a bug of old Glibc releases:

sed -e 's/+01,234,567/+1,234,567 /' \
 -e 's/13.10Pd/13Pd/' \
 -i tests/tsprintf.c

Prepare MPFR for compilation:

./configure --prefix=/usr \
 --disable-static \
 --enable-thread-safe \
 --docdir=/usr/share/doc/mpfr-4.2.0

Compile the package and generate the HTML documentation:

make
make html

Important

The test suite for MPFR in this section is considered critical. Do not skip it under any circumstances.

Test the results and ensure that all 197 tests passed:

make check

Install the package and its documentation:

make install
make install-html

8.20.2. Contents of MPFR
Installed Libraries: libmpfr.so
Installed directory: /usr/share/doc/mpfr-4.2.0

Short Descriptions

libmpfr Contains multiple-precision math functions

126

Linux From Scratch - Version 12.0-systemd

8.21. MPC-1.3.1
The MPC package contains a library for the arithmetic of complex numbers with arbitrarily high precision and correct
rounding of the result.

Approximate build time: 0.1 SBU
Required disk space: 22 MB

8.21.1. Installation of MPC
Prepare MPC for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/mpc-1.3.1

Compile the package and generate the HTML documentation:

make
make html

To test the results, issue:

make check

Install the package and its documentation:

make install
make install-html

8.21.2. Contents of MPC
Installed Libraries: libmpc.so
Installed Directory: /usr/share/doc/mpc-1.3.1

Short Descriptions

libmpc Contains complex math functions

127

Linux From Scratch - Version 12.0-systemd

8.22. Attr-2.5.1
The Attr package contains utilities to administer the extended attributes of filesystem objects.

Approximate build time: less than 0.1 SBU
Required disk space: 4.1 MB

8.22.1. Installation of Attr
Prepare Attr for compilation:

./configure --prefix=/usr \
 --disable-static \
 --sysconfdir=/etc \
 --docdir=/usr/share/doc/attr-2.5.1

Compile the package:

make

The tests must be run on a filesystem that supports extended attributes such as the ext2, ext3, or ext4 filesystems. To
test the results, issue:

make check

Install the package:

make install

8.22.2. Contents of Attr
Installed programs: attr, getfattr, and setfattr
Installed library: libattr.so
Installed directories: /usr/include/attr and /usr/share/doc/attr-2.5.1

Short Descriptions

attr Extends attributes on filesystem objects

getfattr Gets the extended attributes of filesystem objects

setfattr Sets the extended attributes of filesystem objects

libattr Contains the library functions for manipulating extended attributes

128

Linux From Scratch - Version 12.0-systemd

8.23. Acl-2.3.1
The Acl package contains utilities to administer Access Control Lists, which are used to define fine-grained
discretionary access rights for files and directories.

Approximate build time: less than 0.1 SBU
Required disk space: 6.1 MB

8.23.1. Installation of Acl
Prepare Acl for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/acl-2.3.1

Compile the package:

make

The Acl tests must be run on a filesystem that supports access controls, but not until the Coreutils package has been built,
using the Acl libraries. If desired, return to this package and run make check after the Coreutils package has been built.

Install the package:

make install

8.23.2. Contents of Acl
Installed programs: chacl, getfacl, and setfacl
Installed library: libacl.so
Installed directories: /usr/include/acl and /usr/share/doc/acl-2.3.1

Short Descriptions

chacl Changes the access control list of a file or directory

getfacl Gets file access control lists

setfacl Sets file access control lists

libacl Contains the library functions for manipulating Access Control Lists

129

Linux From Scratch - Version 12.0-systemd

8.24. Libcap-2.69
The Libcap package implements the userspace interface to the POSIX 1003.1e capabilities available in Linux kernels.
These capabilities partition the all-powerful root privilege into a set of distinct privileges.

Approximate build time: less than 0.1 SBU
Required disk space: 2.9 MB

8.24.1. Installation of Libcap
Prevent static libraries from being installed:

sed -i '/install -m.*STA/d' libcap/Makefile

Compile the package:

make prefix=/usr lib=lib

The meaning of the make option:

lib=lib

This parameter sets the library directory to /usr/lib rather than /usr/lib64 on x86_64. It has no effect on x86.

To test the results, issue:

make test

Install the package:

make prefix=/usr lib=lib install

8.24.2. Contents of Libcap
Installed programs: capsh, getcap, getpcaps, and setcap
Installed library: libcap.so and libpsx.so

Short Descriptions

capsh A shell wrapper to explore and constrain capability support

getcap Examines file capabilities

getpcaps Displays the capabilities of the queried process(es)

setcap Sets file capabilities

libcap Contains the library functions for manipulating POSIX 1003.1e capabilities

libpsx Contains functions to support POSIX semantics for syscalls associated with the pthread library

130

Linux From Scratch - Version 12.0-systemd

8.25. Libxcrypt-4.4.36
The Libxcrypt package contains a modern library for one-way hashing of passwords.

Approximate build time: 0.1 SBU
Required disk space: 15 MB

8.25.1. Installation of Libxcrypt
Prepare Libxcrypt for compilation:

./configure --prefix=/usr \
 --enable-hashes=strong,glibc \
 --enable-obsolete-api=no \
 --disable-static \
 --disable-failure-tokens

The meaning of the new configure options:

--enable-hashes=strong,glibc

Build strong hash algorithms recommended for security use cases, and the hash algorithms provided by traditional
Glibc libcrypt for compatibility.

--enable-obsolete-api=no

Disable obsolete API functions. They are not needed for a modern Linux system built from source.

--disable-failure-tokens

Disable failure token feature. It's needed for compatibility with the traditional hash libraries of some platforms,
but a Linux system based on Glibc does not need it.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Note

The instructions above disabled obsolete API functions since no package installed by compiling from sources
would link against them at runtime. However, the only known binary-only applications that link against these
functions require ABI version 1. If you must have such functions because of some binary-only application or
to be compliant with LSB, build the package again with the following commands:

make distclean
./configure --prefix=/usr \
 --enable-hashes=strong,glibc \
 --enable-obsolete-api=glibc \
 --disable-static \
 --disable-failure-tokens
make
cp -av .libs/libcrypt.so.1* /usr/lib

131

Linux From Scratch - Version 12.0-systemd

8.25.2. Contents of Libxcrypt
Installed libraries: libcrypt.so

Short Descriptions

libcrypt Contains functions to hash passwords

132

Linux From Scratch - Version 12.0-systemd

8.26. Shadow-4.13
The Shadow package contains programs for handling passwords in a secure way.

Approximate build time: 0.1 SBU
Required disk space: 46 MB

8.26.1. Installation of Shadow

Note

If you would like to enforce the use of strong passwords, refer to https://www.linuxfromscratch.org/blfs/
view/stable-systemd/postlfs/cracklib.html for installing CrackLib prior to building Shadow. Then add --with-
libcrack to the configure command below.

Disable the installation of the groups program and its man pages, as Coreutils provides a better version. Also, prevent
the installation of manual pages that were already installed in Section 8.3, “Man-pages-6.05.01”:

sed -i 's/groups$(EXEEXT) //' src/Makefile.in
find man -name Makefile.in -exec sed -i 's/groups\.1 / /' {} \;
find man -name Makefile.in -exec sed -i 's/getspnam\.3 / /' {} \;
find man -name Makefile.in -exec sed -i 's/passwd\.5 / /' {} \;

Instead of using the default crypt method, use the much more secure YESCRYPT method of password encryption, which
also allows passwords longer than 8 characters. It is also necessary to change the obsolete /var/spool/mail location
for user mailboxes that Shadow uses by default to the /var/mail location used currently. And, remove /bin and /sbin
from the PATH, since they are simply symlinks to their counterparts in /usr.

Note

If you wish to include /bin and/or /sbin in the PATH for some reason, modify the PATH in .bashrc after LFS
has been built.

sed -e 's:#ENCRYPT_METHOD DES:ENCRYPT_METHOD YESCRYPT:' \
 -e 's:/var/spool/mail:/var/mail:' \
 -e '/PATH=/{s@/sbin:@@;s@/bin:@@}' \
 -i etc/login.defs

Note

If you chose to build Shadow with Cracklib support, issue this command:

sed -i 's:DICTPATH.*:DICTPATH\t/lib/cracklib/pw_dict:' etc/login.defs

Prepare Shadow for compilation:

touch /usr/bin/passwd
./configure --sysconfdir=/etc \
 --disable-static \
 --with-{b,yes}crypt \
 --with-group-name-max-length=32

The meaning of the new configuration options:

touch /usr/bin/passwd
The file /usr/bin/passwd needs to exist because its location is hardcoded in some programs; if it does not already
exist, the installation script will create it in the wrong place.

133

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/cracklib.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/cracklib.html

Linux From Scratch - Version 12.0-systemd

--with-{b,yes}crypt

The shell expands this to two switches, --with-bcrypt and --with-yescrypt. They allow shadow to use the Bcrypt
and Yescrypt algorithms implemented by Libxcrypt for hashing passwords. These algorithms are more secure (in
particular, much more resistant to GPU-based attacks) than the traditional SHA algorithms.

--with-group-name-max-length=32

The longest permissible user name is 32 characters. Make the maximum length of a group name the same.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make exec_prefix=/usr install
make -C man install-man

8.26.2. Configuring Shadow
This package contains utilities to add, modify, and delete users and groups; set and change their passwords; and perform
other administrative tasks. For a full explanation of what password shadowing means, see the doc/HOWTO file within the
unpacked source tree. If you use Shadow support, keep in mind that programs which need to verify passwords (display
managers, FTP programs, pop3 daemons, etc.) must be Shadow-compliant. That is, they must be able to work with
shadowed passwords.

To enable shadowed passwords, run the following command:

pwconv

To enable shadowed group passwords, run:

grpconv

Shadow's default configuration for the useradd utility needs some explanation. First, the default action for the useradd
utility is to create the user and a group with the same name as the user. By default the user ID (UID) and group ID (GID)
numbers will begin at 1000. This means if you don't pass extra parameters to useradd, each user will be a member of a
unique group on the system. If this behavior is undesirable, you'll need to pass either the -g or -N parameter to useradd,
or else change the setting of USERGROUPS_ENAB in /etc/login.defs. See useradd(8) for more information.

Second, to change the default parameters, the file /etc/default/useradd must be created and tailored to suit your
particular needs. Create it with:

mkdir -p /etc/default
useradd -D --gid 999

/etc/default/useradd parameter explanations

GROUP=999

This parameter sets the beginning of the group numbers used in the /etc/group file. The particular value 999 comes
from the --gid parameter above. You may set it to any desired value. Note that useradd will never reuse a UID or
GID. If the number identified in this parameter is used, it will use the next available number. Note also that if you
don't have a group with an ID equal to this number on your system, then the first time you use useradd without the
-g parameter, an error message will be generated—useradd: unknown GID 999, even though the account has been
created correctly. That is why we created the group users with this group ID in Section 7.6, “Creating Essential
Files and Symlinks”.

134

Linux From Scratch - Version 12.0-systemd

CREATE_MAIL_SPOOL=yes

This parameter causes useradd to create a mailbox file for each new user. useradd will assign the group ownership
of this file to the mail group with 0660 permissions. If you would rather not create these files, issue the following
command:

sed -i '/MAIL/s/yes/no/' /etc/default/useradd

8.26.3. Setting the Root Password
Choose a password for user root and set it by running:

passwd root

8.26.4. Contents of Shadow
Installed programs: chage, chfn, chgpasswd, chpasswd, chsh, expiry, faillog, getsubids, gpasswd, groupadd,

groupdel, groupmems, groupmod, grpck, grpconv, grpunconv, lastlog, login, logoutd,
newgidmap, newgrp, newuidmap, newusers, nologin, passwd, pwck, pwconv, pwunconv,
sg (link to newgrp), su, useradd, userdel, usermod, vigr (link to vipw), and vipw

Installed directories: /etc/default and /usr/include/shadow
Installed libraries: libsubid.so

Short Descriptions

chage Used to change the maximum number of days between obligatory password changes

chfn Used to change a user's full name and other information

chgpasswd Used to update group passwords in batch mode

chpasswd Used to update user passwords in batch mode

chsh Used to change a user's default login shell

expiry Checks and enforces the current password expiration policy

faillog Is used to examine the log of login failures, to set a maximum number of failures before an account
is blocked, and to reset the failure count

getsubids Is used to list the subordinate id ranges for a user

gpasswd Is used to add and delete members and administrators to groups

groupadd Creates a group with the given name

groupdel Deletes the group with the given name

groupmems Allows a user to administer his/her own group membership list without the requirement of super user
privileges.

groupmod Is used to modify the given group's name or GID

grpck Verifies the integrity of the group files /etc/group and /etc/gshadow

grpconv Creates or updates the shadow group file from the normal group file

grpunconv Updates /etc/group from /etc/gshadow and then deletes the latter

lastlog Reports the most recent login of all users or of a given user

login Is used by the system to let users sign on

135

Linux From Scratch - Version 12.0-systemd

logoutd Is a daemon used to enforce restrictions on log-on time and ports

newgidmap Is used to set the gid mapping of a user namespace

newgrp Is used to change the current GID during a login session

newuidmap Is used to set the uid mapping of a user namespace

newusers Is used to create or update an entire series of user accounts

nologin Displays a message saying an account is not available; it is designed to be used as the default shell
for disabled accounts

passwd Is used to change the password for a user or group account

pwck Verifies the integrity of the password files /etc/passwd and /etc/shadow

pwconv Creates or updates the shadow password file from the normal password file

pwunconv Updates /etc/passwd from /etc/shadow and then deletes the latter

sg Executes a given command while the user's GID is set to that of the given group

su Runs a shell with substitute user and group IDs

useradd Creates a new user with the given name, or updates the default new-user information

userdel Deletes the specified user account

usermod Is used to modify the given user's login name, user identification (UID), shell, initial group, home
directory, etc.

vigr Edits the /etc/group or /etc/gshadow files

vipw Edits the /etc/passwd or /etc/shadow files

libsubid library to handle subordinate id ranges for users and groups

136

Linux From Scratch - Version 12.0-systemd

8.27. GCC-13.2.0
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 42 SBU (with tests)

Required disk space: 5.5 GB

8.27.1. Installation of GCC

If building on x86_64, change the default directory name for 64-bit libraries to “lib”:

case $(uname -m) in
 x86_64)
 sed -e '/m64=/s/lib64/lib/' \
 -i.orig gcc/config/i386/t-linux64
 ;;
esac

The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd build

Prepare GCC for compilation:

../configure --prefix=/usr \
 LD=ld \
 --enable-languages=c,c++ \
 --enable-default-pie \
 --enable-default-ssp \
 --disable-multilib \
 --disable-bootstrap \
 --disable-fixincludes \
 --with-system-zlib

GCC supports seven different computer languages, but the prerequisites for most of them have not yet been installed.
See the BLFS Book GCC page for instructions on how to build all of GCC's supported languages.

The meaning of the new configure parameters:

LD=ld

This parameter makes the configure script use the ld program installed by the Binutils package built earlier in this
chapter, rather than the cross-built version which would otherwise be used.

--disable-fixincludes

By default, during the installation of GCC some system headers would be “fixed” to be used with GCC. This is
not necessary for a modern Linux system, and potentially harmful if a package is reinstalled after installing GCC.
This switch prevents GCC from “fixing” the headers.

--with-system-zlib

This switch tells GCC to link to the system installed copy of the Zlib library, rather than its own internal copy.

137

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/gcc.html

Linux From Scratch - Version 12.0-systemd

Note

PIE (position-independent executables) are binary programs that can be loaded anywhere in memory. Without
PIE, the security feature named ASLR (Address Space Layout Randomization) can be applied for the shared
libraries, but not for the executables themselves. Enabling PIE allows ASLR for the executables in addition
to the shared libraries, and mitigates some attacks based on fixed addresses of sensitive code or data in the
executables.

SSP (Stack Smashing Protection) is a technique to ensure that the parameter stack is not corrupted. Stack
corruption can, for example, alter the return address of a subroutine, thus transferring control to some
dangerous code (existing in the program or shared libraries, or injected by the attacker somehow).

Compile the package:

make

Important

In this section, the test suite for GCC is considered important, but it takes a long time. First-time builders are
encouraged to run the test suite. The time to run the tests can be reduced significantly by adding -jx to the
make -k check command below, where x is the number of CPU cores on your system.

One set of tests in the GCC test suite is known to exhaust the default stack, so increase the stack size prior to running
the tests:

ulimit -s 32768

Test the results as a non-privileged user, but do not stop at errors:

chown -Rv tester .
su tester -c "PATH=$PATH make -k check"

To extract a summary of the test suite results, run:

../contrib/test_summary

To filter out only the summaries, pipe the output through grep -A7 Summ.

Results can be compared with those located at https://www.linuxfromscratch.org/lfs/build-logs/12.0/ and https://gcc.
gnu.org/ml/gcc-testresults/.

Two tests named copy.cc and pr56837.c are known to fail. Additionally, several tests in the vect directory are known
to fail if the hardware does not support AVX.

With Glibc-2.38, the analyzer tests named data-model-4.c and conftest-1.c are known to fail. In the asan tests, several
tests in asan_test.C are known to fail. The test named interception-malloc-test-1.C is known to fail.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues, but have
not resolved them yet. Unless the test results are vastly different from those at the above URL, it is safe to continue.

Install the package:

make install

The GCC build directory is owned by tester now, and the ownership of the installed header directory (and its content)
is incorrect. Change the ownership to the root user and group:

chown -v -R root:root \
 /usr/lib/gcc/$(gcc -dumpmachine)/13.2.0/include{,-fixed}

138

https://www.linuxfromscratch.org/lfs/build-logs/12.0/
https://gcc.gnu.org/ml/gcc-testresults/
https://gcc.gnu.org/ml/gcc-testresults/

Linux From Scratch - Version 12.0-systemd

Create a symlink required by the FHS for "historical" reasons.

ln -svr /usr/bin/cpp /usr/lib

Many packages use the name cc to call the C compiler. We've already created cc as a symlink in gcc-pass2, create its
man page as a symlink as well:

ln -sv gcc.1 /usr/share/man/man1/cc.1

Add a compatibility symlink to enable building programs with Link Time Optimization (LTO):

ln -sfv ../../libexec/gcc/$(gcc -dumpmachine)/13.2.0/liblto_plugin.so \
 /usr/lib/bfd-plugins/

Now that our final toolchain is in place, it is important to again ensure that compiling and linking will work as expected.
We do this by performing some sanity checks:

echo 'int main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

There should be no errors, and the output of the last command will be (allowing for platform-specific differences in
the dynamic linker name):

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

Now make sure that we're set up to use the correct start files:

grep -E -o '/usr/lib.*/S?crt[1in].*succeeded' dummy.log

The output of the last command should be:

/usr/lib/gcc/x86_64-pc-linux-gnu/13.2.0/../../../../lib/Scrt1.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/13.2.0/../../../../lib/crti.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/13.2.0/../../../../lib/crtn.o succeeded

Depending on your machine architecture, the above may differ slightly. The difference will be the name of the directory
after /usr/lib/gcc. The important thing to look for here is that gcc has found all three crt*.o files under the /usr/
lib directory.

Verify that the compiler is searching for the correct header files:

grep -B4 '^ /usr/include' dummy.log

This command should return the following output:

#include <...> search starts here:
 /usr/lib/gcc/x86_64-pc-linux-gnu/13.2.0/include
 /usr/local/include
 /usr/lib/gcc/x86_64-pc-linux-gnu/13.2.0/include-fixed
 /usr/include

Again, the directory named after your target triplet may be different than the above, depending on your system
architecture.

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

139

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/ch03s09.html

Linux From Scratch - Version 12.0-systemd

References to paths that have components with '-linux-gnu' should be ignored, but otherwise the output of the last
command should be:

SEARCH_DIR("/usr/x86_64-pc-linux-gnu/lib64")
SEARCH_DIR("/usr/local/lib64")
SEARCH_DIR("/lib64")
SEARCH_DIR("/usr/lib64")
SEARCH_DIR("/usr/x86_64-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

A 32-bit system may use a few other directories. For example, here is the output from an i686 machine:

SEARCH_DIR("/usr/i686-pc-linux-gnu/lib32")
SEARCH_DIR("/usr/local/lib32")
SEARCH_DIR("/lib32")
SEARCH_DIR("/usr/lib32")
SEARCH_DIR("/usr/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

The output of the last command should be:

attempt to open /usr/lib/libc.so.6 succeeded

Make sure GCC is using the correct dynamic linker:

grep found dummy.log

The output of the last command should be (allowing for platform-specific differences in dynamic linker name):

found ld-linux-x86-64.so.2 at /usr/lib/ld-linux-x86-64.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate
and retrace the steps to find out where the problem is and correct it. Any issues should be resolved before continuing
with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

Finally, move a misplaced file:

mkdir -pv /usr/share/gdb/auto-load/usr/lib
mv -v /usr/lib/*gdb.py /usr/share/gdb/auto-load/usr/lib

8.27.2. Contents of GCC
Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gcc-ar, gcc-nm, gcc-ranlib, gcov, gcov-dump, gcov-

tool, and lto-dump
Installed libraries: libasan.{a,so}, libatomic.{a,so}, libcc1.so, libgcc.a, libgcc_eh.a, libgcc_s.so, libgcov.a,

libgomp.{a,so}, libhwasan.{a,so}, libitm.{a,so}, liblsan.{a,so}, liblto_plugin.so,
libquadmath.{a,so}, libssp.{a,so}, libssp_nonshared.a, libstdc++.{a,so}, libstdc++exp.a,
libstdc++fs.a, libsupc++.a, libtsan.{a,so}, and libubsan.{a,so}

Installed directories: /usr/include/c++, /usr/lib/gcc, /usr/libexec/gcc, and /usr/share/gcc-13.2.0

140

Linux From Scratch - Version 12.0-systemd

Short Descriptions

c++ The C++ compiler

cc The C compiler

cpp The C preprocessor; it is used by the compiler to expand the #include, #define, and similar
directives in the source files

g++ The C++ compiler

gcc The C compiler

gcc-ar A wrapper around ar that adds a plugin to the command line. This program is only used to add
"link time optimization" and is not useful with the default build options.

gcc-nm A wrapper around nm that adds a plugin to the command line. This program is only used to add
"link time optimization" and is not useful with the default build options.

gcc-ranlib A wrapper around ranlib that adds a plugin to the command line. This program is only used to
add "link time optimization" and is not useful with the default build options.

gcov A coverage testing tool; it is used to analyze programs to determine where optimizations will
have the greatest effect

gcov-dump Offline gcda and gcno profile dump tool

gcov-tool Offline gcda profile processing tool

lto-dump Tool for dumping object files produced by GCC with LTO enabled

libasan The Address Sanitizer runtime library

libatomic GCC atomic built-in runtime library

libcc1 The C preprocessing library

libgcc Contains run-time support for gcc

libgcov This library is linked into a program when GCC is instructed to enable profiling

libgomp GNU implementation of the OpenMP API for multi-platform shared-memory parallel
programming in C/C++ and Fortran

libhwasan The Hardware-assisted Address Sanitizer runtime library

libitm The GNU transactional memory library

liblsan The Leak Sanitizer runtime library

liblto_plugin GCC's LTO plugin allows Binutils to process object files produced by GCC with LTO enabled

libquadmath GCC Quad Precision Math Library API

libssp Contains routines supporting GCC's stack-smashing protection functionality. Normally it is not
used, because Glibc also provides those routines.

libstdc++ The standard C++ library

libstdc++exp Experimental C++ Contracts library

libstdc++fs ISO/IEC TS 18822:2015 Filesystem library

libsupc++ Provides supporting routines for the C++ programming language

libtsan The Thread Sanitizer runtime library

libubsan The Undefined Behavior Sanitizer runtime library

141

Linux From Scratch - Version 12.0-systemd

8.28. Pkgconf-2.0.1
The pkgconf package is a successor to pkg-config and contains a tool for passing the include path and/or library paths
to build tools during the configure and make phases of package installations.

Approximate build time: less than 0.1 SBU
Required disk space: 4.6 MB

8.28.1. Installation of Pkgconf
Prepare Pkgconf for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/pkgconf-2.0.1

Compile the package:

make

Install the package:

make install

To maintain compatibility with the original Pkg-config create two symlinks:

ln -sv pkgconf /usr/bin/pkg-config
ln -sv pkgconf.1 /usr/share/man/man1/pkg-config.1

8.28.2. Contents of Pkgconf
Installed programs: pkgconf, pkg-config (link to pkgconf), and bomtool
Installed library: libpkgconf.so
Installed directory: /usr/share/doc/pkgconf-2.0.1

Short Descriptions

pkgconf Returns meta information for the specified library or package

bomtool Generates a Software Bill Of Materials from pkg-config .pc files

libpkgconf Contains most of pkgconf's functionality, while allowing other tools like IDEs and compilers to use
its frameworks

142

Linux From Scratch - Version 12.0-systemd

8.29. Ncurses-6.4
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.2 SBU
Required disk space: 45 MB

8.29.1. Installation of Ncurses
Prepare Ncurses for compilation:

./configure --prefix=/usr \
 --mandir=/usr/share/man \
 --with-shared \
 --without-debug \
 --without-normal \
 --with-cxx-shared \
 --enable-pc-files \
 --enable-widec \
 --with-pkg-config-libdir=/usr/lib/pkgconfig

The meaning of the new configure options:

--with-shared

This makes Ncurses build and install shared C libraries.

--without-normal

This prevents Ncurses building and installing static C libraries.

--without-debug

This prevents Ncurses building and installing debug libraries.

--with-cxx-shared

This makes Ncurses build and install shared C++ bindings. It also prevents it building and installing static C+
+ bindings.

--enable-pc-files

This switch generates and installs .pc files for pkg-config.

--enable-widec

This switch causes wide-character libraries (e.g., libncursesw.so.6.4) to be built instead of normal ones (e.g.,
libncurses.so.6.4). These wide-character libraries are usable in both multibyte and traditional 8-bit locales, while
normal libraries work properly only in 8-bit locales. Wide-character and normal libraries are source-compatible,
but not binary-compatible.

Compile the package:

make

This package has a test suite, but it can only be run after the package has been installed. The tests reside in the test/
directory. See the README file in that directory for further details.

The installation of this package will overwrite libncursesw.so.6.4 in-place. It may crash the shell process which is
using code and data from the library file. Install the package with DESTDIR, and replace the library file correctly using
install command:

make DESTDIR=$PWD/dest install
install -vm755 dest/usr/lib/libncursesw.so.6.4 /usr/lib
rm -v dest/usr/lib/libncursesw.so.6.4
cp -av dest/* /

143

Linux From Scratch - Version 12.0-systemd

Many applications still expect the linker to be able to find non-wide-character Ncurses libraries. Trick such applications
into linking with wide-character libraries by means of symlinks and linker scripts:

for lib in ncurses form panel menu ; do
 rm -vf /usr/lib/lib${lib}.so
 echo "INPUT(-l${lib}w)" > /usr/lib/lib${lib}.so
 ln -sfv ${lib}w.pc /usr/lib/pkgconfig/${lib}.pc
done

Finally, make sure that old applications that look for -lcurses at build time are still buildable:

rm -vf /usr/lib/libcursesw.so
echo "INPUT(-lncursesw)" > /usr/lib/libcursesw.so
ln -sfv libncurses.so /usr/lib/libcurses.so

If desired, install the Ncurses documentation:

cp -v -R doc -T /usr/share/doc/ncurses-6.4

Note

The instructions above don't create non-wide-character Ncurses libraries since no package installed by
compiling from sources would link against them at runtime. However, the only known binary-only
applications that link against non-wide-character Ncurses libraries require version 5. If you must have such
libraries because of some binary-only application or to be compliant with LSB, build the package again with
the following commands:

make distclean
./configure --prefix=/usr \
 --with-shared \
 --without-normal \
 --without-debug \
 --without-cxx-binding \
 --with-abi-version=5
make sources libs
cp -av lib/lib*.so.5* /usr/lib

8.29.2. Contents of Ncurses
Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), ncursesw6-config, reset (link

to tset), tabs, tic, toe, tput, and tset
Installed libraries: libcursesw.so (symlink and linker script to libncursesw.so), libformw.so, libmenuw.so,

libncursesw.so, libncurses++w.so, libpanelw.so, and their non-wide-character
counterparts without "w" in the library names.

Installed directories: /usr/share/tabset, /usr/share/terminfo, and /usr/share/doc/ncurses-6.4

Short Descriptions

captoinfo Converts a termcap description into a terminfo description

clear Clears the screen, if possible

infocmp Compares or prints out terminfo descriptions

infotocap Converts a terminfo description into a termcap description

ncursesw6-config Provides configuration information for ncurses

reset Reinitializes a terminal to its default values

144

Linux From Scratch - Version 12.0-systemd

tabs Clears and sets tab stops on a terminal

tic The terminfo entry-description compiler that translates a terminfo file from source format
into the binary format needed for the ncurses library routines [A terminfo file contains
information on the capabilities of a certain terminal.]

toe Lists all available terminal types, giving the primary name and description for each

tput Makes the values of terminal-dependent capabilities available to the shell; it can also be used
to reset or initialize a terminal or report its long name

tset Can be used to initialize terminals

libcursesw A link to libncursesw

libncursesw Contains functions to display text in many complex ways on a terminal screen; a good
example of the use of these functions is the menu displayed during the kernel's make
menuconfig

libncurses++w Contains C++ binding for other libraries in this package

libformw Contains functions to implement forms

libmenuw Contains functions to implement menus

libpanelw Contains functions to implement panels

145

Linux From Scratch - Version 12.0-systemd

8.30. Sed-4.9
The Sed package contains a stream editor.

Approximate build time: 0.3 SBU
Required disk space: 30 MB

8.30.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/usr

Compile the package and generate the HTML documentation:

make
make html

To test the results, issue:

chown -Rv tester .
su tester -c "PATH=$PATH make check"

Install the package and its documentation:

make install
install -d -m755 /usr/share/doc/sed-4.9
install -m644 doc/sed.html /usr/share/doc/sed-4.9

8.30.2. Contents of Sed
Installed program: sed
Installed directory: /usr/share/doc/sed-4.9

Short Descriptions

sed Filters and transforms text files in a single pass

146

Linux From Scratch - Version 12.0-systemd

8.31. Psmisc-23.6
The Psmisc package contains programs for displaying information about running processes.

Approximate build time: less than 0.1 SBU
Required disk space: 6.6 MB

8.31.1. Installation of Psmisc
Prepare Psmisc for compilation:

./configure --prefix=/usr

Compile the package:

make

To run the test suite, run:

make check

Install the package:

make install

8.31.2. Contents of Psmisc
Installed programs: fuser, killall, peekfd, prtstat, pslog, pstree, and pstree.x11 (link to pstree)

Short Descriptions

fuser Reports the Process IDs (PIDs) of processes that use the given files or file systems

killall Kills processes by name; it sends a signal to all processes running any of the given commands

peekfd Peek at file descriptors of a running process, given its PID

prtstat Prints information about a process

pslog Reports current logs path of a process

pstree Displays running processes as a tree

pstree.x11 Same as pstree, except that it waits for confirmation before exiting

147

Linux From Scratch - Version 12.0-systemd

8.32. Gettext-0.22
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled
with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 1.4 SBU
Required disk space: 250 MB

8.32.1. Installation of Gettext
Prepare Gettext for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/gettext-0.22

Compile the package:

make

To test the results (this takes a long time, around 3 SBUs), issue:

make check

Install the package:

make install
chmod -v 0755 /usr/lib/preloadable_libintl.so

8.32.2. Contents of Gettext
Installed programs: autopoint, envsubst, gettext, gettext.sh, gettextize, msgattrib, msgcat, msgcmp,

msgcomm, msgconv, msgen, msgexec, msgfilter, msgfmt, msggrep, msginit, msgmerge,
msgunfmt, msguniq, ngettext, recode-sr-latin, and xgettext

Installed libraries: libasprintf.so, libgettextlib.so, libgettextpo.so, libgettextsrc.so, libtextstyle.so, and
preloadable_libintl.so

Installed directories: /usr/lib/gettext, /usr/share/doc/gettext-0.22, /usr/share/gettext, and /usr/share/
gettext-0.22

Short Descriptions

autopoint Copies standard Gettext infrastructure files into a source package

envsubst Substitutes environment variables in shell format strings

gettext Translates a natural language message into the user's language by looking up the
translation in a message catalog

gettext.sh Primarily serves as a shell function library for gettext

gettextize Copies all standard Gettext files into the given top-level directory of a package to begin
internationalizing it

msgattrib Filters the messages of a translation catalog according to their attributes and manipulates
the attributes

msgcat Concatenates and merges the given .po files

msgcmp Compares two .po files to check that both contain the same set of msgid strings

148

Linux From Scratch - Version 12.0-systemd

msgcomm Finds the messages that are common to the given .po files

msgconv Converts a translation catalog to a different character encoding

msgen Creates an English translation catalog

msgexec Applies a command to all translations of a translation catalog

msgfilter Applies a filter to all translations of a translation catalog

msgfmt Generates a binary message catalog from a translation catalog

msggrep Extracts all messages of a translation catalog that match a given pattern or belong to
some given source files

msginit Creates a new .po file, initializing the meta information with values from the user's
environment

msgmerge Combines two raw translations into a single file

msgunfmt Decompiles a binary message catalog into raw translation text

msguniq Unifies duplicate translations in a translation catalog

ngettext Displays native language translations of a textual message whose grammatical form
depends on a number

recode-sr-latin Recodes Serbian text from Cyrillic to Latin script

xgettext Extracts the translatable message lines from the given source files to make the first
translation template

libasprintf Defines the autosprintf class, which makes C formatted output routines usable in C++
programs, for use with the <string> strings and the <iostream> streams

libgettextlib Contains common routines used by the various Gettext programs; these are not intended
for general use

libgettextpo Used to write specialized programs that process .po files; this library is used when the
standard applications shipped with Gettext (such as msgcomm, msgcmp, msgattrib,
and msgen) will not suffice

libgettextsrc Provides common routines used by the various Gettext programs; these are not intended
for general use

libtextstyle Text styling library

preloadable_libintl A library, intended to be used by LD_PRELOAD, that helps libintl log untranslated
messages

149

Linux From Scratch - Version 12.0-systemd

8.33. Bison-3.8.2
The Bison package contains a parser generator.

Approximate build time: 2.2 SBU
Required disk space: 62 MB

8.33.1. Installation of Bison
Prepare Bison for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/bison-3.8.2

Compile the package:

make

To test the results (about 5.5 SBU), issue:

make check

Install the package:

make install

8.33.2. Contents of Bison
Installed programs: bison and yacc
Installed library: liby.a
Installed directory: /usr/share/bison

Short Descriptions

bison Generates, from a series of rules, a program for analyzing the structure of text files; Bison is a replacement
for Yacc (Yet Another Compiler Compiler)

yacc A wrapper for bison, meant for programs that still call yacc instead of bison; it calls bison with the -y option

liby The Yacc library containing implementations of Yacc-compatible yyerror and main functions; this library is
normally not very useful, but POSIX requires it

150

Linux From Scratch - Version 12.0-systemd

8.34. Grep-3.11
The Grep package contains programs for searching through the contents of files.

Approximate build time: 0.4 SBU
Required disk space: 39 MB

8.34.1. Installation of Grep
First, remove a warning about using egrep and fgrep that makes tests on some packages fail:

sed -i "s/echo/#echo/" src/egrep.sh

Prepare Grep for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.34.2. Contents of Grep
Installed programs: egrep, fgrep, and grep

Short Descriptions

egrep Prints lines matching an extended regular expression. It is obsolete, use grep -E instead

fgrep Prints lines matching a list of fixed strings. It is obsolete, use grep -F instead

grep Prints lines matching a basic regular expression

151

Linux From Scratch - Version 12.0-systemd

8.35. Bash-5.2.15
The Bash package contains the Bourne-Again Shell.

Approximate build time: 1.1 SBU
Required disk space: 52 MB

8.35.1. Installation of Bash
Prepare Bash for compilation:

./configure --prefix=/usr \
 --without-bash-malloc \
 --with-installed-readline \
 --docdir=/usr/share/doc/bash-5.2.15

The meaning of the new configure option:

--with-installed-readline

This option tells Bash to use the readline library that is already installed on the system rather than using its own
readline version.

Compile the package:

make

Skip down to “Install the package” if not running the test suite.

To prepare the tests, ensure that the tester user can write to the sources tree:

chown -Rv tester .

The test suite of this package is designed to be run as a non-root user who owns the terminal connected to standard
input. To satisfy the requirement, spawn a new pseudo terminal using Expect and run the tests as the tester user:

su -s /usr/bin/expect tester << EOF
set timeout -1
spawn make tests
expect eof
lassign [wait] _ _ _ value
exit $value
EOF

The test suite uses diff to detect the difference between test script output and the expected output. Any output from diff
(prefixed with < and >) indicates a test failure, unless there is a message saying the difference can be ignored. One test
named run-builtins is known to fail on some host distros with a difference on the first line of the output.

Install the package:

make install

Run the newly compiled bash program (replacing the one that is currently being executed):

exec /usr/bin/bash --login

8.35.2. Contents of Bash
Installed programs: bash, bashbug, and sh (link to bash)
Installed directory: /usr/include/bash, /usr/lib/bash, and /usr/share/doc/bash-5.2.15

152

Linux From Scratch - Version 12.0-systemd

Short Descriptions

bash A widely-used command interpreter; it performs many types of expansions and substitutions on a given
command line before executing it, thus making this interpreter a powerful tool

bashbug A shell script to help the user compose and mail standard formatted bug reports concerning bash

sh A symlink to the bash program; when invoked as sh, bash tries to mimic the startup behavior of historical
versions of sh as closely as possible, while conforming to the POSIX standard as well

153

Linux From Scratch - Version 12.0-systemd

8.36. Libtool-2.4.7
The Libtool package contains the GNU generic library support script. It makes the use of shared libraries simpler with
a consistent, portable interface.

Approximate build time: 1.3 SBU
Required disk space: 45 MB

8.36.1. Installation of Libtool
Prepare Libtool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make -k check

Note

The test time for Libtool can be reduced significantly on a system with multiple cores. To do this, append
TESTSUITEFLAGS=-j<N> to the line above. For instance, using -j4 can reduce the test time by over 60
percent.

Five tests are known to fail in the LFS build environment due to a circular dependency, but these tests pass if rechecked
after automake has been installed. Additionally, with grep-3.8, two tests will trigger a warning for non-POSIX regular
expressions and fail.

Install the package:

make install

Remove a useless static library:

rm -fv /usr/lib/libltdl.a

8.36.2. Contents of Libtool
Installed programs: libtool and libtoolize
Installed libraries: libltdl.so
Installed directories: /usr/include/libltdl and /usr/share/libtool

Short Descriptions

libtool Provides generalized library-building support services

libtoolize Provides a standard way to add libtool support to a package

libltdl Hides the various difficulties of opening dynamically loaded libraries

154

Linux From Scratch - Version 12.0-systemd

8.37. GDBM-1.23
The GDBM package contains the GNU Database Manager. It is a library of database functions that uses extensible
hashing and works like the standard UNIX dbm. The library provides primitives for storing key/data pairs, searching
and retrieving the data by its key and deleting a key along with its data.

Approximate build time: less than 0.1 SBU
Required disk space: 13 MB

8.37.1. Installation of GDBM
Prepare GDBM for compilation:

./configure --prefix=/usr \
 --disable-static \
 --enable-libgdbm-compat

The meaning of the configure option:

--enable-libgdbm-compat

This switch enables building the libgdbm compatibility library. Some packages outside of LFS may require the
older DBM routines it provides.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.37.2. Contents of GDBM
Installed programs: gdbm_dump, gdbm_load, and gdbmtool
Installed libraries: libgdbm.so and libgdbm_compat.so

Short Descriptions

gdbm_dump Dumps a GDBM database to a file

gdbm_load Recreates a GDBM database from a dump file

gdbmtool Tests and modifies a GDBM database

libgdbm Contains functions to manipulate a hashed database

libgdbm_compat Compatibility library containing older DBM functions

155

Linux From Scratch - Version 12.0-systemd

8.38. Gperf-3.1
Gperf generates a perfect hash function from a key set.

Approximate build time: less than 0.1 SBU
Required disk space: 6.1 MB

8.38.1. Installation of Gperf
Prepare Gperf for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/gperf-3.1

Compile the package:

make

The tests are known to fail if running multiple simultaneous tests (-j option greater than 1). To test the results, issue:

make -j1 check

Install the package:

make install

8.38.2. Contents of Gperf
Installed program: gperf
Installed directory: /usr/share/doc/gperf-3.1

Short Descriptions

gperf Generates a perfect hash from a key set

156

Linux From Scratch - Version 12.0-systemd

8.39. Expat-2.5.0
The Expat package contains a stream oriented C library for parsing XML.

Approximate build time: 0.1 SBU
Required disk space: 12 MB

8.39.1. Installation of Expat
Prepare Expat for compilation:

./configure --prefix=/usr \
 --disable-static \
 --docdir=/usr/share/doc/expat-2.5.0

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

If desired, install the documentation:

install -v -m644 doc/*.{html,css} /usr/share/doc/expat-2.5.0

8.39.2. Contents of Expat
Installed program: xmlwf
Installed libraries: libexpat.so
Installed directory: /usr/share/doc/expat-2.5.0

Short Descriptions

xmlwf Is a non-validating utility to check whether or not XML documents are well formed

libexpat Contains API functions for parsing XML

157

Linux From Scratch - Version 12.0-systemd

8.40. Inetutils-2.4
The Inetutils package contains programs for basic networking.

Approximate build time: 0.2 SBU
Required disk space: 31 MB

8.40.1. Installation of Inetutils
Prepare Inetutils for compilation:

./configure --prefix=/usr \
 --bindir=/usr/bin \
 --localstatedir=/var \
 --disable-logger \
 --disable-whois \
 --disable-rcp \
 --disable-rexec \
 --disable-rlogin \
 --disable-rsh \
 --disable-servers

The meaning of the configure options:

--disable-logger

This option prevents Inetutils from installing the logger program, which is used by scripts to pass messages to the
System Log Daemon. Do not install it because Util-linux installs a more recent version.

--disable-whois

This option disables the building of the Inetutils whois client, which is out of date. Instructions for a better whois
client are in the BLFS book.

--disable-r*

These parameters disable building obsolete programs that should not be used due to security issues. The functions
provided by these programs can be provided by the openssh package in the BLFS book.

--disable-servers

This disables the installation of the various network servers included as part of the Inetutils package. These servers
are deemed not appropriate in a basic LFS system. Some are insecure by nature and are only considered safe on
trusted networks. Note that better replacements are available for many of these servers.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Move a program to the proper location:

mv -v /usr/{,s}bin/ifconfig

8.40.2. Contents of Inetutils
Installed programs: dnsdomainname, ftp, ifconfig, hostname, ping, ping6, talk, telnet, tftp, and traceroute

158

Linux From Scratch - Version 12.0-systemd

Short Descriptions

dnsdomainname Show the system's DNS domain name

ftp Is the file transfer protocol program

hostname Reports or sets the name of the host

ifconfig Manages network interfaces

ping Sends echo-request packets and reports how long the replies take

ping6 A version of ping for IPv6 networks

talk Is used to chat with another user

telnet An interface to the TELNET protocol

tftp A trivial file transfer program

traceroute Traces the route your packets take from the host you are working on to another host on a network,
showing all the intermediate hops (gateways) along the way

159

Linux From Scratch - Version 12.0-systemd

8.41. Less-643
The Less package contains a text file viewer.

Approximate build time: less than 0.1 SBU
Required disk space: 12 MB

8.41.1. Installation of Less
Prepare Less for compilation:

./configure --prefix=/usr --sysconfdir=/etc

The meaning of the configure options:

--sysconfdir=/etc

This option tells the programs created by the package to look in /etc for the configuration files.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.41.2. Contents of Less
Installed programs: less, lessecho, and lesskey

Short Descriptions

less A file viewer or pager; it displays the contents of the given file, letting the user scroll, find strings, and
jump to marks

lessecho Needed to expand meta-characters, such as * and ?, in filenames on Unix systems

lesskey Used to specify the key bindings for less

160

Linux From Scratch - Version 12.0-systemd

8.42. Perl-5.38.0
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 7.1 SBU
Required disk space: 239 MB

8.42.1. Installation of Perl
This version of Perl builds the Compress::Raw::Zlib and Compress::Raw::BZip2 modules. By default Perl will use an
internal copy of the sources for the build. Issue the following command so that Perl will use the libraries installed on
the system:

export BUILD_ZLIB=False
export BUILD_BZIP2=0

To have full control over the way Perl is set up, you can remove the “-des” options from the following command and
hand-pick the way this package is built. Alternatively, use the command exactly as shown below to use the defaults
that Perl auto-detects:

sh Configure -des \
 -Dprefix=/usr \
 -Dvendorprefix=/usr \
 -Dprivlib=/usr/lib/perl5/5.38/core_perl \
 -Darchlib=/usr/lib/perl5/5.38/core_perl \
 -Dsitelib=/usr/lib/perl5/5.38/site_perl \
 -Dsitearch=/usr/lib/perl5/5.38/site_perl \
 -Dvendorlib=/usr/lib/perl5/5.38/vendor_perl \
 -Dvendorarch=/usr/lib/perl5/5.38/vendor_perl \
 -Dman1dir=/usr/share/man/man1 \
 -Dman3dir=/usr/share/man/man3 \
 -Dpager="/usr/bin/less -isR" \
 -Duseshrplib \
 -Dusethreads

The meaning of the configure options:

-Dvendorprefix=/usr

This ensures perl knows how to tell packages where they should install their Perl modules.

-Dpager="/usr/bin/less -isR"

This ensures that less is used instead of more.

-Dman1dir=/usr/share/man/man1 -Dman3dir=/usr/share/man/man3

Since Groff is not installed yet, Configure will not create man pages for Perl. These parameters override this
behavior.

-Duseshrplib

Build a shared libperl needed by some Perl modules.

-Dusethreads

Build Perl with support for threads.

-Dprivlib,-Darchlib,-Dsitelib,...

These settings define where Perl looks for installed modules. The LFS editors chose to put them in a directory
structure based on the MAJOR.MINOR version of Perl (5.38) which allows upgrading Perl to newer patch levels
(the patch level is the last dot separated part in the full version string like 5.38.0) without reinstalling all of the
modules.

161

Linux From Scratch - Version 12.0-systemd

Compile the package:

make

To test the results (approximately 11 SBU), issue:

make test

Install the package and clean up:

make install
unset BUILD_ZLIB BUILD_BZIP2

8.42.2. Contents of Perl
Installed programs: corelist, cpan, enc2xs, encguess, h2ph, h2xs, instmodsh, json_pp, libnetcfg, perl,

perl5.38.0 (hard link to perl), perlbug, perldoc, perlivp, perlthanks (hard link to perlbug),
piconv, pl2pm, pod2html, pod2man, pod2text, pod2usage, podchecker, podselect, prove,
ptar, ptardiff, ptargrep, shasum, splain, xsubpp, and zipdetails

Installed libraries: Many which cannot all be listed here
Installed directory: /usr/lib/perl5

Short Descriptions

corelist A command line front end to Module::CoreList

cpan Interact with the Comprehensive Perl Archive Network (CPAN) from the command line

enc2xs Builds a Perl extension for the Encode module from either Unicode Character Mappings or Tcl
Encoding Files

encguess Guess the encoding type of one or several files

h2ph Converts .h C header files to .ph Perl header files

h2xs Converts .h C header files to Perl extensions

instmodsh Shell script for examining installed Perl modules; it can create a tarball from an installed module

json_pp Converts data between certain input and output formats

libnetcfg Can be used to configure the libnet Perl module

perl Combines some of the best features of C, sed, awk and sh into a single Swiss Army language

perl5.38.0 A hard link to perl

perlbug Used to generate bug reports about Perl, or the modules that come with it, and mail them

perldoc Displays a piece of documentation in pod format that is embedded in the Perl installation tree or in
a Perl script

perlivp The Perl Installation Verification Procedure; it can be used to verify that Perl and its libraries have
been installed correctly

perlthanks Used to generate thank you messages to mail to the Perl developers

piconv A Perl version of the character encoding converter iconv

pl2pm A rough tool for converting Perl4 .pl files to Perl5 .pm modules

pod2html Converts files from pod format to HTML format

pod2man Converts pod data to formatted *roff input

162

Linux From Scratch - Version 12.0-systemd

pod2text Converts pod data to formatted ASCII text

pod2usage Prints usage messages from embedded pod docs in files

podchecker Checks the syntax of pod format documentation files

podselect Displays selected sections of pod documentation

prove Command line tool for running tests against the Test::Harness module

ptar A tar-like program written in Perl

ptardiff A Perl program that compares an extracted archive with an unextracted one

ptargrep A Perl program that applies pattern matching to the contents of files in a tar archive

shasum Prints or checks SHA checksums

splain Is used to force verbose warning diagnostics in Perl

xsubpp Converts Perl XS code into C code

zipdetails Displays details about the internal structure of a Zip file

163

Linux From Scratch - Version 12.0-systemd

8.43. XML::Parser-2.46
The XML::Parser module is a Perl interface to James Clark's XML parser, Expat.

Approximate build time: less than 0.1 SBU
Required disk space: 2.3 MB

8.43.1. Installation of XML::Parser
Prepare XML::Parser for compilation:

perl Makefile.PL

Compile the package:

make

To test the results, issue:

make test

Install the package:

make install

8.43.2. Contents of XML::Parser
Installed module: Expat.so

Short Descriptions

Expat provides the Perl Expat interface

164

Linux From Scratch - Version 12.0-systemd

8.44. Intltool-0.51.0
The Intltool is an internationalization tool used for extracting translatable strings from source files.

Approximate build time: less than 0.1 SBU
Required disk space: 1.5 MB

8.44.1. Installation of Intltool
First fix a warning that is caused by perl-5.22 and later:

sed -i 's:\\\${:\\\$\\{:' intltool-update.in

Note

The above regular expression looks unusual because of all the backslashes. What it does is add a backslash
before the right brace character in the sequence '\${' resulting in '\$\{'.

Prepare Intltool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install
install -v -Dm644 doc/I18N-HOWTO /usr/share/doc/intltool-0.51.0/I18N-HOWTO

8.44.2. Contents of Intltool
Installed programs: intltool-extract, intltool-merge, intltool-prepare, intltool-update, and intltoolize
Installed directories: /usr/share/doc/intltool-0.51.0 and /usr/share/intltool

Short Descriptions

intltoolize Prepares a package to use intltool

intltool-extract Generates header files that can be read by gettext

intltool-merge Merges translated strings into various file types

intltool-prepare Updates pot files and merges them with translation files

intltool-update Updates the po template files and merges them with the translations

165

Linux From Scratch - Version 12.0-systemd

8.45. Autoconf-2.71
The Autoconf package contains programs for producing shell scripts that can automatically configure source code.

Approximate build time: less than 0.1 SBU (about 6.0 SBU with tests)
Required disk space: 24 MB

8.45.1. Installation of Autoconf
First, fix several problems with the tests caused by bash-5.2 and later:

sed -e 's/SECONDS|/&SHLVL|/' \
 -e '/BASH_ARGV=/a\ /^SHLVL=/ d' \
 -i.orig tests/local.at

Prepare Autoconf for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Note

The test time for autoconf can be reduced significantly on a system with multiple cores. To do this, append
TESTSUITEFLAGS=-j<N> to the line above. For instance, using -j4 can reduce the test time by over 60
percent.

Install the package:

make install

8.45.2. Contents of Autoconf
Installed programs: autoconf, autoheader, autom4te, autoreconf, autoscan, autoupdate, and ifnames
Installed directory: /usr/share/autoconf

Short Descriptions

autoconf Produces shell scripts that automatically configure software source code packages to adapt to many
kinds of Unix-like systems; the configuration scripts it produces are independent—running them
does not require the autoconf program

autoheader A tool for creating template files of C #define statements for configure to use

autom4te A wrapper for the M4 macro processor

autoreconf Automatically runs autoconf, autoheader, aclocal, automake, gettextize, and libtoolize in the
correct order to save time when changes are made to autoconf and automake template files

autoscan Helps to create a configure.in file for a software package; it examines the source files in a directory
tree, searching them for common portability issues, and creates a configure.scan file that serves as
as a preliminary configure.in file for the package

166

Linux From Scratch - Version 12.0-systemd

autoupdate Modifies a configure.in file that still calls autoconf macros by their old names to use the current
macro names

ifnames Helps when writing configure.in files for a software package; it prints the identifiers that the
package uses in C preprocessor conditionals [If a package has already been set up to have some
portability, this program can help determine what configure needs to check for. It can also fill in
gaps in a configure.in file generated by autoscan.]

167

Linux From Scratch - Version 12.0-systemd

8.46. Automake-1.16.5
The Automake package contains programs for generating Makefiles for use with Autoconf.

Approximate build time: less than 0.1 SBU (about 7.0 SBU with tests)
Required disk space: 114 MB

8.46.1. Installation of Automake
Prepare Automake for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/automake-1.16.5

Compile the package:

make

Using the -j4 make option speeds up the tests, even on systems with only one processor, due to internal delays in
individual tests. To test the results, issue:

make -j4 check

The test t/subobj.sh is known to fail.

Install the package:

make install

8.46.2. Contents of Automake
Installed programs: aclocal, aclocal-1.16 (hard linked with aclocal), automake, and automake-1.16 (hard

linked with automake)
Installed directories: /usr/share/aclocal-1.16, /usr/share/automake-1.16, and /usr/share/doc/automake-1.16.5

Short Descriptions

aclocal Generates aclocal.m4 files based on the contents of configure.in files

aclocal-1.16 A hard link to aclocal

automake A tool for automatically generating Makefile.in files from Makefile.am files [To create all the
Makefile.in files for a package, run this program in the top-level directory. By scanning the
configure.in file, it automatically finds each appropriate Makefile.am file and generates the
corresponding Makefile.in file.]

automake-1.16 A hard link to automake

168

Linux From Scratch - Version 12.0-systemd

8.47. OpenSSL-3.1.2
The OpenSSL package contains management tools and libraries relating to cryptography. These are useful for providing
cryptographic functions to other packages, such as OpenSSH, email applications, and web browsers (for accessing
HTTPS sites).

Approximate build time: 3.0 SBU

Required disk space: 587 MB

8.47.1. Installation of OpenSSL

Prepare OpenSSL for compilation:

./config --prefix=/usr \
 --openssldir=/etc/ssl \
 --libdir=lib \
 shared \
 zlib-dynamic

Compile the package:

make

To test the results, issue:

make test

One test, 30-test_afalg.t, is known to fail if the host kernel does not have CONFIG_CRYPTO_USER_API_SKCIPHER enabled,
or does not have any options providing an AES with CBC implementation (for example, the combination of CONFIG_
CRYPTO_AES and CONFIG_CRYPTO_CBC, or CONFIG_CRYPTO_AES_NI_INTEL if the CPU supports AES-NI) enabled. If it fails,
it can safely be ignored.

Install the package:

sed -i '/INSTALL_LIBS/s/libcrypto.a libssl.a//' Makefile
make MANSUFFIX=ssl install

Add the version to the documentation directory name, to be consistent with other packages:

mv -v /usr/share/doc/openssl /usr/share/doc/openssl-3.1.2

If desired, install some additional documentation:

cp -vfr doc/* /usr/share/doc/openssl-3.1.2

169

Linux From Scratch - Version 12.0-systemd

Note

You should update OpenSSL when a new version which fixes vulnerabilities is announced. Since OpenSSL
3.0.0, the OpenSSL versioning scheme follows the MAJOR.MINOR.PATCH format. API/ABI compatibility
is guaranteed for the same MAJOR version number. Because LFS installs only the shared libraries, there is
no need to recompile packages which link to libcrypto.so or libssl.so when upgrading to a version with
the same MAJOR version number.

If OpenSSH is installed, it will be an exception of the general rule above. It contains an over-restrictive
OpenSSL version check, so both SSH client and SSH server will refuse to start if OpenSSL is updated with
MAJOR version number unchanged but MINOR version number changed. You need to rebuild OpenSSH
after such an upgrade. If OpenSSH is being used to access the system, you must rebuild and reinstall
it after upgrading OpenSSL to a new MINOR version number before logout or you won't be able to
login via SSH anymore.

However, any running programs linked to those libraries need to be stopped and restarted. Read the related
entries in Section 8.2.1, “Upgrade Issues” for details.

8.47.2. Contents of OpenSSL
Installed programs: c_rehash and openssl
Installed libraries: libcrypto.so and libssl.so
Installed directories: /etc/ssl, /usr/include/openssl, /usr/lib/engines and /usr/share/doc/openssl-3.1.2

Short Descriptions

c_rehash is a Perl script that scans all files in a directory and adds symbolic links to their hash values. Use
of c_rehash is considered obsolete and should be replaced by openssl rehash command

openssl is a command-line tool for using the various cryptography functions of OpenSSL's crypto library
from the shell. It can be used for various functions which are documented in man 1 openssl

libcrypto.so implements a wide range of cryptographic algorithms used in various Internet standards. The
services provided by this library are used by the OpenSSL implementations of SSL, TLS and S/
MIME, and they have also been used to implement OpenSSH, OpenPGP, and other cryptographic
standards

libssl.so implements the Transport Layer Security (TLS v1) protocol. It provides a rich API, documentation
on which can be found by running man 7 ssl

170

Linux From Scratch - Version 12.0-systemd

8.48. Kmod-30
The Kmod package contains libraries and utilities for loading kernel modules

Approximate build time: less than 0.1 SBU
Required disk space: 12 MB

8.48.1. Installation of Kmod
Prepare Kmod for compilation:

./configure --prefix=/usr \
 --sysconfdir=/etc \
 --with-openssl \
 --with-xz \
 --with-zstd \
 --with-zlib

The meaning of the configure options:

--with-openssl

This option enables Kmod to handle PKCS7 signatures for kernel modules.

--with-xz, --with-zlib, and --with-zstd
These options enable Kmod to handle compressed kernel modules.

Compile the package:

make

The test suite of this package requires raw kernel headers (not the “sanitized” kernel headers installed earlier), which
are beyond the scope of LFS.

Install the package and create symlinks for compatibility with Module-Init-Tools (the package that previously handled
Linux kernel modules):

make install

for target in depmod insmod modinfo modprobe rmmod; do
 ln -sfv ../bin/kmod /usr/sbin/$target
done

ln -sfv kmod /usr/bin/lsmod

8.48.2. Contents of Kmod
Installed programs: depmod (link to kmod), insmod (link to kmod), kmod, lsmod (link to kmod), modinfo

(link to kmod), modprobe (link to kmod), and rmmod (link to kmod)
Installed library: libkmod.so

Short Descriptions

depmod Creates a dependency file based on the symbols it finds in the existing set of modules; this dependency
file is used by modprobe to automatically load the required modules

insmod Installs a loadable module in the running kernel

kmod Loads and unloads kernel modules

171

Linux From Scratch - Version 12.0-systemd

lsmod Lists currently loaded modules

modinfo Examines an object file associated with a kernel module and displays any information that it can glean

modprobe Uses a dependency file, created by depmod, to automatically load relevant modules

rmmod Unloads modules from the running kernel

libkmod This library is used by other programs to load and unload kernel modules

172

Linux From Scratch - Version 12.0-systemd

8.49. Libelf from Elfutils-0.189
Libelf is a library for handling ELF (Executable and Linkable Format) files.

Approximate build time: 0.3 SBU
Required disk space: 122 MB

8.49.1. Installation of Libelf
Libelf is part of the elfutils-0.189 package. Use the elfutils-0.189.tar.bz2 file as the source tarball.

Prepare Libelf for compilation:

./configure --prefix=/usr \
 --disable-debuginfod \
 --enable-libdebuginfod=dummy

Compile the package:

make

To test the results, issue:

make check

Install only Libelf:

make -C libelf install
install -vm644 config/libelf.pc /usr/lib/pkgconfig
rm /usr/lib/libelf.a

8.49.2. Contents of Libelf
Installed Library: libelf.so
Installed Directory: /usr/include/elfutils

Short Descriptions

libelf.so Contains API functions to handle ELF object files

173

Linux From Scratch - Version 12.0-systemd

8.50. Libffi-3.4.4
The Libffi library provides a portable, high level programming interface to various calling conventions. This allows a
programmer to call any function specified by a call interface description at run time.

FFI stands for Foreign Function Interface. An FFI allows a program written in one language to call a program written
in another language. Specifically, Libffi can provide a bridge between an interpreter like Perl, or Python, and shared
library subroutines written in C, or C++.

Approximate build time: 1.8 SBU
Required disk space: 11 MB

8.50.1. Installation of Libffi

Note

Like GMP, Libffi builds with optimizations specific to the processor in use. If building for another system,
change the value of the --with-gcc-arch= parameter in the following command to an architecture name fully
implemented by the CPU on that system. If this is not done, all applications that link to libffi will trigger
Illegal Operation Errors.

Prepare Libffi for compilation:

./configure --prefix=/usr \
 --disable-static \
 --with-gcc-arch=native

The meaning of the configure option:

--with-gcc-arch=native

Ensure GCC optimizes for the current system. If this is not specified, the system is guessed and the code generated
may not be correct. If the generated code will be copied from the native system to a less capable system, use the less
capable system as a parameter. For details about alternative system types, see the x86 options in the GCC manual.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.50.2. Contents of Libffi
Installed library: libffi.so

Short Descriptions

libffi Contains the foreign function interface API functions

174

https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/x86-Options.html

Linux From Scratch - Version 12.0-systemd

8.51. Python-3.11.4
The Python 3 package contains the Python development environment. It is useful for object-oriented programming,
writing scripts, prototyping large programs, and developing entire applications. Python is an interpreted computer
language.

Approximate build time: 1.9 SBU
Required disk space: 370 MB

8.51.1. Installation of Python 3
Prepare Python for compilation:

./configure --prefix=/usr \
 --enable-shared \
 --with-system-expat \
 --with-system-ffi \
 --enable-optimizations

The meaning of the configure options:

--with-system-expat

This switch enables linking against the system version of Expat.

--with-system-ffi

This switch enables linking against the system version of libffi.so.

--enable-optimizations

This switch enables extensive, but time-consuming, optimization steps. The interpreter is built twice; tests
performed on the first build are used to improve the optimized final version.

Compile the package:

make

Running the tests at this point is not recommended. The tests are known to hang indefinitely in the partial LFS
environment. If desired, the tests can be rerun at the end of this chapter, or when Python 3 is reinstalled in BLFS. To
run the tests anyway, issue make test.

Install the package:

make install

We use the pip3 command to install Python 3 programs and modules for all users as root in several places in this
book. This conflicts with the Python developers' recommendation: to install packages into a virtual environment, or
into the home directory of a regular user (by running pip3 as this user). A multi-line warning is triggered whenever
pip3 is issued by the root user.

The main reason for the recommendation is to avoid conflicts with the system's package manager (dpkg, for example).
LFS does not have a system-wide package manager, so this is not a problem. Also, pip3 will check for a new version
of itself whenever it's run. Since domain name resolution is not yet configured in the LFS chroot environment, pip3
cannot check for a new version of itself, and will produce a warning.

After we boot the LFS system and set up a network connection, a different warning will be issued, telling the user
to update pip3 from a pre-built wheel on PyPI (whenever a new version is available). But LFS considers pip3 to
be a part of Python 3, so it should not be updated separately. Also, an update from a pre-built wheel would deviate

175

Linux From Scratch - Version 12.0-systemd

from our objective: to build a Linux system from source code. So the warning about a new version of pip3 should be
ignored as well. If you wish, you can suppress all these warnings by running the following command, which creates
a configuration file:

cat > /etc/pip.conf << EOF
[global]
root-user-action = ignore
disable-pip-version-check = true
EOF

Important

In LFS and BLFS we normally build and install Python modules with the pip3 command. Please be sure that
the pip3 install commands in both books are run as the root user (unless it's for a Python virtual environment).
Running pip3 install as a non-root user may seem to work, but it will cause the installed module to be
inaccessible by other users.

pip3 install will not reinstall an already installed module automatically. When using the pip3 install
command to upgrade a module (for example, from meson-0.61.3 to meson-0.62.0), insert the option --upgrade
into the command line. If it's really necessary to downgrade a module, or reinstall the same version for some
reason, insert --force-reinstall --no-deps into the command line.

If desired, install the preformatted documentation:

install -v -dm755 /usr/share/doc/python-3.11.4/html

tar --strip-components=1 \
 --no-same-owner \
 --no-same-permissions \
 -C /usr/share/doc/python-3.11.4/html \
 -xvf ../python-3.11.4-docs-html.tar.bz2

The meaning of the documentation install commands:

--no-same-owner and --no-same-permissions
Ensure the installed files have the correct ownership and permissions. Without these options, tar will install the
package files with the upstream creator's values.

8.51.2. Contents of Python 3
Installed Programs: 2to3, idle3, pip3, pydoc3, python3, and python3-config
Installed Library: libpython3.11.so and libpython3.so
Installed Directories: /usr/include/python3.11, /usr/lib/python3, and /usr/share/doc/python-3.11.4

Short Descriptions

2to3 is a Python program that reads Python 2.x source code and applies a series of fixes to transform it into
valid Python 3.x code

idle3 is a wrapper script that opens a Python aware GUI editor. For this script to run, you must have installed
Tk before Python, so that the Tkinter Python module is built.

pip3 The package installer for Python. You can use pip to install packages from Python Package Index and
other indexes.

pydoc3 is the Python documentation tool

176

Linux From Scratch - Version 12.0-systemd

python3 is the interpreter for Python, an interpreted, interactive, object-oriented programming language

177

Linux From Scratch - Version 12.0-systemd

8.52. Flit-Core-3.9.0
Flit-core is the distribution-building parts of Flit (a packaging tool for simple Python modules).

Approximate build time: less than 0.1 SBU
Required disk space: 1.7 MB

8.52.1. Installation of Flit-Core
Build the package:

pip3 wheel -w dist --no-build-isolation --no-deps $PWD

Install the package:

pip3 install --no-index --no-user --find-links dist flit_core

The meaning of the pip3 configuration options and commands:

wheel
This command builds the wheel archive for this package.

-w dist

Instructs pip to put the created wheel into the dist directory.

install
This command installs the package.

--no-build-isolation, --no-deps, and --no-index
These options prevent fetching files from the online package repository (PyPI). If packages are installed in the
correct order, pip won't need to fetch any files in the first place; these options add some safety in case of user error.

--find-links dist

Instructs pip to search for wheel archives in the dist directory.

8.52.2. Contents of Flit-Core
Installed directory: /usr/lib/python3.11/site-packages/flit_core and /usr/lib/python3.11/site-packages/

flit_core-3.9.0.dist-info

178

Linux From Scratch - Version 12.0-systemd

8.53. Wheel-0.41.1
Wheel is a Python library that is the reference implementation of the Python wheel packaging standard.

Approximate build time: less than 0.1 SBU
Required disk space: 1.5 MB

8.53.1. Installation of Wheel
Compile Wheel with the following command:

pip3 wheel -w dist --no-build-isolation --no-deps $PWD

Install Wheel with the following command:

pip3 install --no-index --find-links=dist wheel

8.53.2. Contents of Wheel
Installed program: wheel
Installed directories: /usr/lib/python3.11/site-packages/wheel and /usr/lib/python3.11/site-packages/

wheel-0.41.1.dist-info

Short Descriptions

wheel is a utility to unpack, pack, or convert wheel archives

179

Linux From Scratch - Version 12.0-systemd

8.54. Ninja-1.11.1
Ninja is a small build system with a focus on speed.

Approximate build time: 0.3 SBU
Required disk space: 75 MB

8.54.1. Installation of Ninja
When run, ninja normally utilizes the greatest possible number of processes in parallel. By default this is the number
of cores on the system, plus two. This may overheat the CPU, or make the system run out of memory. When ninja is
invoked from the command line, passing the -jN parameter will limit the number of parallel processes. Some packages
embed the execution of ninja, and do not pass the -j parameter on to it.

Using the optional procedure below allows a user to limit the number of parallel processes via an environment variable,
NINJAJOBS. For example, setting:

export NINJAJOBS=4

will limit ninja to four parallel processes.

If desired, make ninja recognize the environment variable NINJAJOBS by running the stream editor:

sed -i '/int Guess/a \
 int j = 0;\
 char* jobs = getenv("NINJAJOBS");\
 if (jobs != NULL) j = atoi(jobs);\
 if (j > 0) return j;\
' src/ninja.cc

Build Ninja with:

python3 configure.py --bootstrap

The meaning of the build option:

--bootstrap

This parameter forces Ninja to rebuild itself for the current system.

To test the results, issue:

./ninja ninja_test

./ninja_test --gtest_filter=-SubprocessTest.SetWithLots

Install the package:

install -vm755 ninja /usr/bin/
install -vDm644 misc/bash-completion /usr/share/bash-completion/completions/ninja
install -vDm644 misc/zsh-completion /usr/share/zsh/site-functions/_ninja

8.54.2. Contents of Ninja
Installed programs: ninja

Short Descriptions

ninja is the Ninja build system

180

Linux From Scratch - Version 12.0-systemd

8.55. Meson-1.2.1
Meson is an open source build system designed to be both extremely fast and as user friendly as possible.

Approximate build time: less than 0.1 SBU
Required disk space: 42 MB

8.55.1. Installation of Meson
Compile Meson with the following command:

pip3 wheel -w dist --no-build-isolation --no-deps $PWD

The test suite requires some packages outside the scope of LFS.

Install the package:

pip3 install --no-index --find-links dist meson
install -vDm644 data/shell-completions/bash/meson /usr/share/bash-completion/completions/meson
install -vDm644 data/shell-completions/zsh/_meson /usr/share/zsh/site-functions/_meson

The meaning of the install parameters:

-w dist

Puts the created wheels into the dist directory.

--find-links dist

Installs wheels from the dist directory.

8.55.2. Contents of Meson
Installed programs: meson
Installed directory: /usr/lib/python3.11/site-packages/meson-1.2.1.dist-info and /usr/lib/python3.11/site-

packages/mesonbuild

Short Descriptions

meson A high productivity build system

181

Linux From Scratch - Version 12.0-systemd

8.56. Coreutils-9.3
The Coreutils package contains the basic utility programs needed by every operating system.

Approximate build time: 0.9 SBU
Required disk space: 165 MB

8.56.1. Installation of Coreutils
POSIX requires that programs from Coreutils recognize character boundaries correctly even in multibyte locales. The
following patch fixes this non-compliance and other internationalization-related bugs.

patch -Np1 -i ../coreutils-9.3-i18n-1.patch

Note

Many bugs have been found in this patch. When reporting new bugs to the Coreutils maintainers, please check
first to see if those bugs are reproducible without this patch.

Now prepare Coreutils for compilation:

autoreconf -fiv
FORCE_UNSAFE_CONFIGURE=1 ./configure \
 --prefix=/usr \
 --enable-no-install-program=kill,uptime

The meaning of the configure options:

autoreconf
The patch for internationalization has modified the build system, so the configuration files must be regenerated.

FORCE_UNSAFE_CONFIGURE=1

This environment variable allows the package to be built by the root user.

--enable-no-install-program=kill,uptime

The purpose of this switch is to prevent Coreutils from installing programs that will be installed by other packages.

Compile the package:

make

Skip down to “Install the package” if not running the test suite.

Now the test suite is ready to be run. First, run the tests that are meant to be run as user root:

make NON_ROOT_USERNAME=tester check-root

We're going to run the remainder of the tests as the tester user. Certain tests require that the user be a member of more
than one group. So that these tests are not skipped, add a temporary group and make the user tester a part of it:

groupadd -g 102 dummy -U tester

Fix some of the permissions so that the non-root user can compile and run the tests:

chown -Rv tester .

Now run the tests:

su tester -c "PATH=$PATH make RUN_EXPENSIVE_TESTS=yes check"

182

Linux From Scratch - Version 12.0-systemd

The test-getlogin test may fail in the LFS chroot environment.

Remove the temporary group:

groupdel dummy

Install the package:

make install

Move programs to the locations specified by the FHS:

mv -v /usr/bin/chroot /usr/sbin
mv -v /usr/share/man/man1/chroot.1 /usr/share/man/man8/chroot.8
sed -i 's/"1"/"8"/' /usr/share/man/man8/chroot.8

8.56.2. Contents of Coreutils
Installed programs: [, b2sum, base32, base64, basename, basenc, cat, chcon, chgrp, chmod, chown, chroot,

cksum, comm, cp, csplit, cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand,
expr, factor, false, fmt, fold, groups, head, hostid, id, install, join, link, ln, logname, ls,
md5sum, mkdir, mkfifo, mknod, mktemp, mv, nice, nl, nohup, nproc, numfmt, od, paste,
pathchk, pinky, pr, printenv, printf, ptx, pwd, readlink, realpath, rm, rmdir, runcon, seq,
sha1sum, sha224sum, sha256sum, sha384sum, sha512sum, shred, shuf, sleep, sort, split,
stat, stdbuf, stty, sum, sync, tac, tail, tee, test, timeout, touch, tr, true, truncate, tsort, tty,
uname, unexpand, uniq, unlink, users, vdir, wc, who, whoami, and yes

Installed library: libstdbuf.so (in /usr/libexec/coreutils)
Installed directory: /usr/libexec/coreutils

Short Descriptions

[Is an actual command, /usr/bin/[; it is a synonym for the test command

base32 Encodes and decodes data according to the base32 specification (RFC 4648)

base64 Encodes and decodes data according to the base64 specification (RFC 4648)

b2sum Prints or checks BLAKE2 (512-bit) checksums

basename Strips any path and a given suffix from a file name

basenc Encodes or decodes data using various algorithms

cat Concatenates files to standard output

chcon Changes security context for files and directories

chgrp Changes the group ownership of files and directories

chmod Changes the permissions of each file to the given mode; the mode can be either a symbolic
representation of the changes to be made, or an octal number representing the new permissions

chown Changes the user and/or group ownership of files and directories

chroot Runs a command with the specified directory as the / directory

cksum Prints the Cyclic Redundancy Check (CRC) checksum and the byte counts of each specified file

comm Compares two sorted files, outputting in three columns the lines that are unique and the lines that are
common

cp Copies files

183

Linux From Scratch - Version 12.0-systemd

csplit Splits a given file into several new files, separating them according to given patterns or line numbers,
and outputting the byte count of each new file

cut Prints sections of lines, selecting the parts according to given fields or positions

date Displays the current date and time in the given format, or sets the system date and time

dd Copies a file using the given block size and count, while optionally performing conversions on it

df Reports the amount of disk space available (and used) on all mounted file systems, or only on the file
systems holding the selected files

dir Lists the contents of each given directory (the same as the ls command)

dircolors Outputs commands to set the LS_COLOR environment variable to change the color scheme used by ls

dirname Extracts the directory portion(s) of the given name(s)

du Reports the amount of disk space used by the current directory, by each of the given directories
(including all subdirectories) or by each of the given files

echo Displays the given strings

env Runs a command in a modified environment

expand Converts tabs to spaces

expr Evaluates expressions

factor Prints the prime factors of the specified integers

false Does nothing, unsuccessfully; it always exits with a status code indicating failure

fmt Reformats the paragraphs in the given files

fold Wraps the lines in the given files

groups Reports a user's group memberships

head Prints the first ten lines (or the given number of lines) of each given file

hostid Reports the numeric identifier (in hexadecimal) of the host

id Reports the effective user ID, group ID, and group memberships of the current user or specified user

install Copies files while setting their permission modes and, if possible, their owner and group

join Joins the lines that have identical join fields from two separate files

link Creates a hard link (with the given name) to a file

ln Makes hard links or soft (symbolic) links between files

logname Reports the current user's login name

ls Lists the contents of each given directory

md5sum Reports or checks Message Digest 5 (MD5) checksums

mkdir Creates directories with the given names

mkfifo Creates First-In, First-Outs (FIFOs), "named pipes" in UNIX parlance, with the given names

mknod Creates device nodes with the given names; a device node is a character special file, a block special
file, or a FIFO

mktemp Creates temporary files in a secure manner; it is used in scripts

mv Moves or renames files or directories

184

Linux From Scratch - Version 12.0-systemd

nice Runs a program with modified scheduling priority

nl Numbers the lines from the given files

nohup Runs a command immune to hangups, with its output redirected to a log file

nproc Prints the number of processing units available to a process

numfmt Converts numbers to or from human-readable strings

od Dumps files in octal and other formats

paste Merges the given files, joining sequentially corresponding lines side by side, separated by tab characters

pathchk Checks if file names are valid or portable

pinky Is a lightweight finger client; it reports some information about the given users

pr Paginates and columnates files for printing

printenv Prints the environment

printf Prints the given arguments according to the given format, much like the C printf function

ptx Produces a permuted index from the contents of the given files, with each keyword in its context

pwd Reports the name of the current working directory

readlink Reports the value of the given symbolic link

realpath Prints the resolved path

rm Removes files or directories

rmdir Removes directories if they are empty

runcon Runs a command with specified security context

seq Prints a sequence of numbers within a given range and with a given increment

sha1sum Prints or checks 160-bit Secure Hash Algorithm 1 (SHA1) checksums

sha224sum Prints or checks 224-bit Secure Hash Algorithm checksums

sha256sum Prints or checks 256-bit Secure Hash Algorithm checksums

sha384sum Prints or checks 384-bit Secure Hash Algorithm checksums

sha512sum Prints or checks 512-bit Secure Hash Algorithm checksums

shred Overwrites the given files repeatedly with complex patterns, making it difficult to recover the data

shuf Shuffles lines of text

sleep Pauses for the given amount of time

sort Sorts the lines from the given files

split Splits the given file into pieces, by size or by number of lines

stat Displays file or filesystem status

stdbuf Runs commands with altered buffering operations for its standard streams

stty Sets or reports terminal line settings

sum Prints checksum and block counts for each given file

sync Flushes file system buffers; it forces changed blocks to disk and updates the super block

tac Concatenates the given files in reverse

185

Linux From Scratch - Version 12.0-systemd

tail Prints the last ten lines (or the given number of lines) of each given file

tee Reads from standard input while writing both to standard output and to the given files

test Compares values and checks file types

timeout Runs a command with a time limit

touch Changes file timestamps, setting the access and modification times of the given files to the current time;
files that do not exist are created with zero length

tr Translates, squeezes, and deletes the given characters from standard input

true Does nothing, successfully; it always exits with a status code indicating success

truncate Shrinks or expands a file to the specified size

tsort Performs a topological sort; it writes a completely ordered list according to the partial ordering in a
given file

tty Reports the file name of the terminal connected to standard input

uname Reports system information

unexpand Converts spaces to tabs

uniq Discards all but one of successive identical lines

unlink Removes the given file

users Reports the names of the users currently logged on

vdir Is the same as ls -l

wc Reports the number of lines, words, and bytes for each given file, as well as grand totals when more
than one file is given

who Reports who is logged on

whoami Reports the user name associated with the current effective user ID

yes Repeatedly outputs “y”, or a given string, until killed

libstdbuf Library used by stdbuf

186

Linux From Scratch - Version 12.0-systemd

8.57. Check-0.15.2
Check is a unit testing framework for C.

Approximate build time: 0.1 SBU (about 1.6 SBU with tests)
Required disk space: 12 MB

8.57.1. Installation of Check
Prepare Check for compilation:

./configure --prefix=/usr --disable-static

Build the package:

make

Compilation is now complete. To run the Check test suite, issue the following command:

make check

Install the package:

make docdir=/usr/share/doc/check-0.15.2 install

8.57.2. Contents of Check
Installed program: checkmk
Installed library: libcheck.so

Short Descriptions

checkmk Awk script for generating C unit tests for use with the Check unit testing framework

libcheck.so Contains functions that allow Check to be called from a test program

187

Linux From Scratch - Version 12.0-systemd

8.58. Diffutils-3.10
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.3 SBU
Required disk space: 36 MB

8.58.1. Installation of Diffutils
Prepare Diffutils for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.58.2. Contents of Diffutils
Installed programs: cmp, diff, diff3, and sdiff

Short Descriptions

cmp Compares two files and reports any differences byte by byte

diff Compares two files or directories and reports which lines in the files differ

diff3 Compares three files line by line

sdiff Merges two files and interactively outputs the results

188

Linux From Scratch - Version 12.0-systemd

8.59. Gawk-5.2.2
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.1 SBU
Required disk space: 46 MB

8.59.1. Installation of Gawk
First, ensure some unneeded files are not installed:

sed -i 's/extras//' Makefile.in

Prepare Gawk for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

chown -Rv tester .
su tester -c "PATH=$PATH make check"

Install the package:

make LN='ln -f' install

The meaning of the overridden make variable:

LN='ln -f'

This variable ensures that the previous hard link installed in Section 6.9, “Gawk-5.2.2” is updated here.

The installation process already created awk as a symlink to gawk, create its man page as a symlink as well:

ln -sv gawk.1 /usr/share/man/man1/awk.1

If desired, install the documentation:

mkdir -pv /usr/share/doc/gawk-5.2.2
cp -v doc/{awkforai.txt,*.{eps,pdf,jpg}} /usr/share/doc/gawk-5.2.2

8.59.2. Contents of Gawk
Installed programs: awk (link to gawk), gawk, and gawk-5.2.2
Installed libraries: filefuncs.so, fnmatch.so, fork.so, inplace.so, intdiv.so, ordchr.so, readdir.so, readfile.so,

revoutput.so, revtwoway.so, rwarray.so, and time.so (all in /usr/lib/gawk)
Installed directories: /usr/lib/gawk, /usr/libexec/awk, /usr/share/awk, and /usr/share/doc/gawk-5.2.2

Short Descriptions

awk A link to gawk

gawk A program for manipulating text files; it is the GNU implementation of awk

gawk-5.2.2 A hard link to gawk

189

Linux From Scratch - Version 12.0-systemd

8.60. Findutils-4.9.0
The Findutils package contains programs to find files. Programs are provided to search through all the files in a directory
tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable unless the database
has been updated recently). Findutils also supplies the xargs program, which can be used to run a specified command
on each file selected by a search.

Approximate build time: 0.4 SBU
Required disk space: 51 MB

8.60.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/usr --localstatedir=/var/lib/locate

The meaning of the configure options:

--localstatedir

This option moves the locate database to /var/lib/locate, which is the FHS-compliant location.

Compile the package:

make

To test the results, issue:

chown -Rv tester .
su tester -c "PATH=$PATH make check"

Install the package:

make install

8.60.2. Contents of Findutils
Installed programs: find, locate, updatedb, and xargs
Installed directory: /var/lib/locate

Short Descriptions

find Searches given directory trees for files matching the specified criteria

locate Searches through a database of file names and reports the names that contain a given string or match
a given pattern

updatedb Updates the locate database; it scans the entire file system (including other file systems that are currently
mounted, unless told not to) and puts every file name it finds into the database

xargs Can be used to apply a given command to a list of files

190

Linux From Scratch - Version 12.0-systemd

8.61. Groff-1.23.0
The Groff package contains programs for processing and formatting text and images.

Approximate build time: 0.2 SBU
Required disk space: 107 MB

8.61.1. Installation of Groff
Groff expects the environment variable PAGE to contain the default paper size. For users in the United States, PAGE=letter
is appropriate. Elsewhere, PAGE=A4 may be more suitable. While the default paper size is configured during compilation,
it can be overridden later by echoing either “A4” or “letter” to the /etc/papersize file.

Prepare Groff for compilation:

PAGE=<paper_size> ./configure --prefix=/usr

Build the package:

make

To test the results, issue:

make check

Install the package:

make install

8.61.2. Contents of Groff
Installed programs: addftinfo, afmtodit, chem, eqn, eqn2graph, gdiffmk, glilypond, gperl, gpinyin,

grap2graph, grn, grodvi, groff, groffer, grog, grolbp, grolj4, gropdf, grops, grotty,
hpftodit, indxbib, lkbib, lookbib, mmroff, neqn, nroff, pdfmom, pdfroff, pfbtops, pic,
pic2graph, post-grohtml, preconv, pre-grohtml, refer, roff2dvi, roff2html, roff2pdf,
roff2ps, roff2text, roff2x, soelim, tbl, tfmtodit, and troff

Installed directories: /usr/lib/groff and /usr/share/doc/groff-1.23.0, /usr/share/groff

Short Descriptions

addftinfo Reads a troff font file and adds some additional font-metric information that is used by the groff
system

afmtodit Creates a font file for use with groff and grops

chem Groff preprocessor for producing chemical structure diagrams

eqn Compiles descriptions of equations embedded within troff input files into commands that are
understood by troff

eqn2graph Converts a troff EQN (equation) into a cropped image

gdiffmk Marks differences between groff/nroff/troff files

glilypond Transforms sheet music written in the lilypond language into the groff language

gperl Preprocessor for groff, allowing the insertion of perl code into groff files

gpinyin Preprocessor for groff, allowing the insertion of Pinyin (Mandarin Chinese spelled with the Roman
alphabet) into groff files.

191

Linux From Scratch - Version 12.0-systemd

grap2graph Converts a grap program file into a cropped bitmap image (grap is an old Unix programming
language for creating diagrams)

grn A groff preprocessor for gremlin files

grodvi A driver for groff that produces TeX dvi format output files

groff A front end to the groff document formatting system; normally, it runs the troff program and a
post-processor appropriate for the selected device

groffer Displays groff files and man pages on X and tty terminals

grog Reads files and guesses which of the groff options -e, -man, -me, -mm, -ms, -p, -s, and -t are required
for printing files, and reports the groff command including those options

grolbp Is a groff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers)

grolj4 Is a driver for groff that produces output in PCL5 format suitable for an HP LaserJet 4 printer

gropdf Translates the output of GNU troff to PDF

grops Translates the output of GNU troff to PostScript

grotty Translates the output of GNU troff into a form suitable for typewriter-like devices

hpftodit Creates a font file for use with groff -Tlj4 from an HP-tagged font metric file

indxbib Creates an inverted index for the bibliographic databases with a specified file for use with refer,
lookbib, and lkbib

lkbib Searches bibliographic databases for references that contain specified keys and reports any
references found

lookbib Prints a prompt on the standard error (unless the standard input is not a terminal), reads a line
containing a set of keywords from the standard input, searches the bibliographic databases in a
specified file for references containing those keywords, prints any references found on the standard
output, and repeats this process until the end of input

mmroff A simple preprocessor for groff

neqn Formats equations for American Standard Code for Information Interchange (ASCII) output

nroff A script that emulates the nroff command using groff

pdfmom Is a wrapper around groff that facilitates the production of PDF documents from files formatted
with the mom macros.

pdfroff Creates pdf documents using groff

pfbtops Translates a PostScript font in .pfb format to ASCII

pic Compiles descriptions of pictures embedded within troff or TeX input files into commands
understood by TeX or troff

pic2graph Converts a PIC diagram into a cropped image

post-grohtml Translates the output of GNU troff to HTML

preconv Converts encoding of input files to something GNU troff understands

pre-grohtml Translates the output of GNU troff to HTML

refer Copies the contents of a file to the standard output, except that lines between .[and .] are interpreted
as citations, and lines between .R1 and .R2 are interpreted as commands for how citations are to
be processed

192

Linux From Scratch - Version 12.0-systemd

roff2dvi Transforms roff files into DVI format

roff2html Transforms roff files into HTML format

roff2pdf Transforms roff files into PDFs

roff2ps Transforms roff files into ps files

roff2text Transforms roff files into text files

roff2x Transforms roff files into other formats

soelim Reads files and replaces lines of the form .so file by the contents of the mentioned file

tbl Compiles descriptions of tables embedded within troff input files into commands that are
understood by troff

tfmtodit Creates a font file for use with groff -Tdvi

troff Is highly compatible with Unix troff; it should usually be invoked using the groff command, which
will also run preprocessors and post-processors in the appropriate order and with the appropriate
options

193

Linux From Scratch - Version 12.0-systemd

8.62. GRUB-2.06
The GRUB package contains the GRand Unified Bootloader.

Approximate build time: 0.3 SBU
Required disk space: 161 MB

8.62.1. Installation of GRUB

Note

If your system has UEFI support and you wish to boot LFS with UEFI, you can skip this package in LFS, and
install GRUB with UEFI support (and its dependencies) by following the instructions on the BLFS page.

Warning

Unset any environment variables which may affect the build:

unset {C,CPP,CXX,LD}FLAGS

Don't try “tuning” this package with custom compilation flags. This package is a bootloader. The low-level
operations in the source code may be broken by aggressive optimization.

Fix an issue causing grub-install to fail when the /boot partition (or the root partition if /boot is not a separate partition)
is created by e2fsprogs-1.47.0 or later:

patch -Np1 -i ../grub-2.06-upstream_fixes-1.patch

Prepare GRUB for compilation:

./configure --prefix=/usr \
 --sysconfdir=/etc \
 --disable-efiemu \
 --disable-werror

The meaning of the new configure options:

--disable-werror

This allows the build to complete with warnings introduced by more recent versions of Flex.

--disable-efiemu

This option minimizes what is built by disabling a feature and eliminating some test programs not needed for LFS.

Compile the package:

make

The test suite for this packages is not recommended. Most of the tests depend on packages that are not available in the
limited LFS environment. To run the tests anyway, run make check.

Install the package:

make install
mv -v /etc/bash_completion.d/grub /usr/share/bash-completion/completions

Making your LFS system bootable with GRUB will be discussed in Section 10.4, “Using GRUB to Set Up the Boot
Process”.

194

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/grub-efi.html

Linux From Scratch - Version 12.0-systemd

8.62.2. Contents of GRUB
Installed programs: grub-bios-setup, grub-editenv, grub-file, grub-fstest, grub-glue-efi, grub-install, grub-

kbdcomp, grub-macbless, grub-menulst2cfg, grub-mkconfig, grub-mkimage, grub-
mklayout, grub-mknetdir, grub-mkpasswd-pbkdf2, grub-mkrelpath, grub-mkrescue,
grub-mkstandalone, grub-ofpathname, grub-probe, grub-reboot, grub-render-label, grub-
script-check, grub-set-default, grub-sparc64-setup, and grub-syslinux2cfg

Installed directories: /usr/lib/grub, /etc/grub.d, /usr/share/grub, and /boot/grub (when grub-install is first run)

Short Descriptions

grub-bios-setup Is a helper program for grub-install

grub-editenv Is a tool to edit the environment block

grub-file Checks to see if the given file is of the specified type

grub-fstest Is a tool to debug the filesystem driver

grub-glue-efi Glues 32-bit and 64-bit binaries into a single file (for Apple machines)

grub-install Installs GRUB on your drive

grub-kbdcomp Is a script that converts an xkb layout into one recognized by GRUB

grub-macbless Is the Mac-style bless for HFS or HFS+ file systems (bless is peculiar to Apple
machines; it makes a device bootable)

grub-menulst2cfg Converts a GRUB Legacy menu.lst into a grub.cfg for use with GRUB 2

grub-mkconfig Generates a grub.cfg file

grub-mkimage Makes a bootable image of GRUB

grub-mklayout Generates a GRUB keyboard layout file

grub-mknetdir Prepares a GRUB netboot directory

grub-mkpasswd-pbkdf2 Generates an encrypted PBKDF2 password for use in the boot menu

grub-mkrelpath Makes a system pathname relative to its root

grub-mkrescue Makes a bootable image of GRUB suitable for a floppy disk, CDROM/DVD, or a USB
drive

grub-mkstandalone Generates a standalone image

grub-ofpathname Is a helper program that prints the path to a GRUB device

grub-probe Probes device information for a given path or device

grub-reboot Sets the default boot entry for GRUB for the next boot only

grub-render-label Renders Apple .disk_label for Apple Macs

grub-script-check Checks the GRUB configuration script for syntax errors

grub-set-default Sets the default boot entry for GRUB

grub-sparc64-setup Is a helper program for grub-setup

grub-syslinux2cfg Transforms a syslinux config file into grub.cfg format

195

Linux From Scratch - Version 12.0-systemd

8.63. Gzip-1.12
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.3 SBU
Required disk space: 21 MB

8.63.1. Installation of Gzip
Prepare Gzip for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.63.2. Contents of Gzip
Installed programs: gunzip, gzexe, gzip, uncompress (hard link with gunzip), zcat, zcmp, zdiff, zegrep,

zfgrep, zforce, zgrep, zless, zmore, and znew

Short Descriptions

gunzip Decompresses gzipped files

gzexe Creates self-decompressing executable files

gzip Compresses the given files using Lempel-Ziv (LZ77) coding

uncompress Decompresses compressed files

zcat Decompresses the given gzipped files to standard output

zcmp Runs cmp on gzipped files

zdiff Runs diff on gzipped files

zegrep Runs egrep on gzipped files

zfgrep Runs fgrep on gzipped files

zforce Forces a .gz extension on all given files that are gzipped files, so that gzip will not compress them
again; this can be useful when file names were truncated during a file transfer

zgrep Runs grep on gzipped files

zless Runs less on gzipped files

zmore Runs more on gzipped files

znew Re-compresses files from compress format to gzip format—.Z to .gz

196

Linux From Scratch - Version 12.0-systemd

8.64. IPRoute2-6.4.0
The IPRoute2 package contains programs for basic and advanced IPV4-based networking.

Approximate build time: 0.1 SBU
Required disk space: 17 MB

8.64.1. Installation of IPRoute2
The arpd program included in this package will not be built since it depends on Berkeley DB, which is not installed
in LFS. However, a directory and a man page for arpd will still be installed. Prevent this by running the commands
shown below. (If the arpd program is needed, instructions for compiling Berkeley DB can be found in the BLFS book
at https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/db.html.)

sed -i /ARPD/d Makefile
rm -fv man/man8/arpd.8

Compile the package:

make NETNS_RUN_DIR=/run/netns

This package does not have a working test suite.

Install the package:

make SBINDIR=/usr/sbin install

If desired, install the documentation:

mkdir -pv /usr/share/doc/iproute2-6.4.0
cp -v COPYING README* /usr/share/doc/iproute2-6.4.0

8.64.2. Contents of IPRoute2
Installed programs: bridge, ctstat (link to lnstat), genl, ifstat, ip, lnstat, nstat, routel, rtacct, rtmon, rtpr, rtstat

(link to lnstat), ss, and tc
Installed directories: /etc/iproute2, /usr/lib/tc, and /usr/share/doc/iproute2-6.4.0

Short Descriptions

bridge Configures network bridges

ctstat Connection status utility

genl Generic netlink utility front end

ifstat Shows interface statistics, including the number of packets transmitted and received, by interface

ip The main executable. It has several different functions, including these:
ip link <device> allows users to look at the state of devices and to make changes
ip addr allows users to look at addresses and their properties, add new addresses, and delete old ones
ip neighbor allows users to look at neighbor bindings and their properties, add new neighbor entries, and
delete old ones
ip rule allows users to look at the routing policies and change them
ip route allows users to look at the routing table and change routing table rules
ip tunnel allows users to look at the IP tunnels and their properties, and change them

197

https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/db.html

Linux From Scratch - Version 12.0-systemd

ip maddr allows users to look at the multicast addresses and their properties, and change them
ip mroute allows users to set, change, or delete the multicast routing
ip monitor allows users to continuously monitor the state of devices, addresses and routes

lnstat Provides Linux network statistics; it is a generalized and more feature-complete replacement for the old
rtstat program

nstat Displays network statistics

routel A component of ip route, for listing the routing tables

rtacct Displays the contents of /proc/net/rt_acct

rtmon Route monitoring utility

rtpr Converts the output of ip -o into a readable form

rtstat Route status utility

ss Similar to the netstat command; shows active connections

tc Traffic control for Quality of Service (QoS) and Class of Service (CoS) implementations
tc qdisc allows users to set up the queueing discipline
tc class allows users to set up classes based on the queuing discipline scheduling
tc filter allows users to set up the QoS/CoS packet filtering
tc monitor can be used to view changes made to Traffic Control in the kernel.

198

Linux From Scratch - Version 12.0-systemd

8.65. Kbd-2.6.1
The Kbd package contains key-table files, console fonts, and keyboard utilities.

Approximate build time: 0.1 SBU
Required disk space: 35 MB

8.65.1. Installation of Kbd

The behavior of the backspace and delete keys is not consistent across the keymaps in the Kbd package. The following
patch fixes this issue for i386 keymaps:

patch -Np1 -i ../kbd-2.6.1-backspace-1.patch

After patching, the backspace key generates the character with code 127, and the delete key generates a well-known
escape sequence.

Remove the redundant resizecons program (it requires the defunct svgalib to provide the video mode files - for normal
use setfont sizes the console appropriately) together with its manpage.

sed -i '/RESIZECONS_PROGS=/s/yes/no/' configure
sed -i 's/resizecons.8 //' docs/man/man8/Makefile.in

Prepare Kbd for compilation:

./configure --prefix=/usr --disable-vlock

The meaning of the configure option:

--disable-vlock

This option prevents the vlock utility from being built because it requires the PAM library, which isn't available
in the chroot environment.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Note

For some languages (e.g., Belarusian) the Kbd package doesn't provide a useful keymap where the stock
“by” keymap assumes the ISO-8859-5 encoding, and the CP1251 keymap is normally used. Users of such
languages have to download working keymaps separately.

If desired, install the documentation:

cp -R -v docs/doc -T /usr/share/doc/kbd-2.6.1

199

Linux From Scratch - Version 12.0-systemd

8.65.2. Contents of Kbd
Installed programs: chvt, deallocvt, dumpkeys, fgconsole, getkeycodes, kbdinfo, kbd_mode, kbdrate,

loadkeys, loadunimap, mapscrn, openvt, psfaddtable (link to psfxtable), psfgettable (link
to psfxtable), psfstriptable (link to psfxtable), psfxtable, setfont, setkeycodes, setleds,
setmetamode, setvtrgb, showconsolefont, showkey, unicode_start, and unicode_stop

Installed directories: /usr/share/consolefonts, /usr/share/consoletrans, /usr/share/keymaps, /usr/share/doc/
kbd-2.6.1, and /usr/share/unimaps

Short Descriptions

chvt Changes the foreground virtual terminal

deallocvt Deallocates unused virtual terminals

dumpkeys Dumps the keyboard translation tables

fgconsole Prints the number of the active virtual terminal

getkeycodes Prints the kernel scancode-to-keycode mapping table

kbdinfo Obtains information about the status of a console

kbd_mode Reports or sets the keyboard mode

kbdrate Sets the keyboard repeat and delay rates

loadkeys Loads the keyboard translation tables

loadunimap Loads the kernel unicode-to-font mapping table

mapscrn An obsolete program that used to load a user-defined output character mapping table into the
console driver; this is now done by setfont

openvt Starts a program on a new virtual terminal (VT)

psfaddtable Adds a Unicode character table to a console font

psfgettable Extracts the embedded Unicode character table from a console font

psfstriptable Removes the embedded Unicode character table from a console font

psfxtable Handles Unicode character tables for console fonts

setfont Changes the Enhanced Graphic Adapter (EGA) and Video Graphics Array (VGA) fonts on
the console

setkeycodes Loads kernel scancode-to-keycode mapping table entries; this is useful if there are unusual
keys on the keyboard

setleds Sets the keyboard flags and Light Emitting Diodes (LEDs)

setmetamode Defines the keyboard meta-key handling

setvtrgb Sets the console color map in all virtual terminals

showconsolefont Shows the current EGA/VGA console screen font

showkey Reports the scancodes, keycodes, and ASCII codes of the keys pressed on the keyboard

unicode_start Puts the keyboard and console in UNICODE mode [Don't use this program unless your
keymap file is in the ISO-8859-1 encoding. For other encodings, this utility produces incorrect
results.]

unicode_stop Reverts keyboard and console from UNICODE mode

200

Linux From Scratch - Version 12.0-systemd

8.66. Libpipeline-1.5.7
The Libpipeline package contains a library for manipulating pipelines of subprocesses in a flexible and convenient way.

Approximate build time: 0.1 SBU
Required disk space: 10 MB

8.66.1. Installation of Libpipeline
Prepare Libpipeline for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.66.2. Contents of Libpipeline
Installed library: libpipeline.so

Short Descriptions

libpipeline This library is used to safely construct pipelines between subprocesses

201

Linux From Scratch - Version 12.0-systemd

8.67. Make-4.4.1
The Make package contains a program for controlling the generation of executables and other non-source files of a
package from source files.

Approximate build time: 0.5 SBU
Required disk space: 13 MB

8.67.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

chown -Rv tester .
su tester -c "PATH=$PATH make check"

Install the package:

make install

8.67.2. Contents of Make
Installed program: make

Short Descriptions

make Automatically determines which pieces of a package need to be (re)compiled and then issues the relevant
commands

202

Linux From Scratch - Version 12.0-systemd

8.68. Patch-2.7.6
The Patch package contains a program for modifying or creating files by applying a “patch” file typically created by
the diff program.

Approximate build time: 0.1 SBU
Required disk space: 12 MB

8.68.1. Installation of Patch
Prepare Patch for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.68.2. Contents of Patch
Installed program: patch

Short Descriptions

patch Modifies files according to a patch file (A patch file is normally a difference listing created with the diff
program. By applying these differences to the original files, patch creates the patched versions.)

203

Linux From Scratch - Version 12.0-systemd

8.69. Tar-1.35
The Tar package provides the ability to create tar archives as well as perform various other kinds of archive
manipulation. Tar can be used on previously created archives to extract files, to store additional files, or to update or
list files which were already stored.

Approximate build time: 1.7 SBU
Required disk space: 43 MB

8.69.1. Installation of Tar
Prepare Tar for compilation:

FORCE_UNSAFE_CONFIGURE=1 \
./configure --prefix=/usr

The meaning of the configure option:

FORCE_UNSAFE_CONFIGURE=1

This forces the test for mknod to be run as root. It is generally considered dangerous to run this test as the root
user, but as it is being run on a system that has only been partially built, overriding it is OK.

Compile the package:

make

To test the results, issue:

make check

Note

The test time for Tar can be reduced significantly on a system with multiple cores. To do this, append
TESTSUITEFLAGS=-j<N> to the line above. For instance, using -j4 can reduce the test time by over 70
percent.

One test, capabilities: binary store/restore, is known to fail if it is run because LFS lacks selinux, but will be skipped if
the host kernel does not support extended attributes or security labels on the filesystem used for building LFS.

Install the package:

make install
make -C doc install-html docdir=/usr/share/doc/tar-1.35

8.69.2. Contents of Tar
Installed programs: tar
Installed directory: /usr/share/doc/tar-1.35

Short Descriptions

tar Creates, extracts files from, and lists the contents of archives, also known as tarballs

204

Linux From Scratch - Version 12.0-systemd

8.70. Texinfo-7.0.3
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.3 SBU
Required disk space: 128 MB

8.70.1. Installation of Texinfo
Prepare Texinfo for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Optionally, install the components belonging in a TeX installation:

make TEXMF=/usr/share/texmf install-tex

The meaning of the make parameter:

TEXMF=/usr/share/texmf

The TEXMF makefile variable holds the location of the root of the TeX tree if, for example, a TeX package will
be installed later.

The Info documentation system uses a plain text file to hold its list of menu entries. The file is located at /usr/share/
info/dir. Unfortunately, due to occasional problems in the Makefiles of various packages, it can sometimes get out
of sync with the info pages installed on the system. If the /usr/share/info/dir file ever needs to be recreated, the
following optional commands will accomplish the task:

pushd /usr/share/info
 rm -v dir
 for f in *
 do install-info $f dir 2>/dev/null
 done
popd

8.70.2. Contents of Texinfo
Installed programs: info, install-info, makeinfo (link to texi2any), pdftexi2dvi, pod2texi, texi2any, texi2dvi,

texi2pdf, and texindex
Installed library: MiscXS.so, Parsetexi.so, and XSParagraph.so (all in /usr/lib/texinfo)
Installed directories: /usr/share/texinfo and /usr/lib/texinfo

Short Descriptions

info Used to read info pages which are similar to man pages, but often go much deeper than just
explaining all the available command line options [For example, compare man bison and info
bison.]

205

Linux From Scratch - Version 12.0-systemd

install-info Used to install info pages; it updates entries in the info index file

makeinfo Translates the given Texinfo source documents into info pages, plain text, or HTML

pdftexi2dvi Used to format the given Texinfo document into a Portable Document Format (PDF) file

pod2texi Converts Pod to Texinfo format

texi2any Translate Texinfo source documentation to various other formats

texi2dvi Used to format the given Texinfo document into a device-independent file that can be printed

texi2pdf Used to format the given Texinfo document into a Portable Document Format (PDF) file

texindex Used to sort Texinfo index files

206

Linux From Scratch - Version 12.0-systemd

8.71. Vim-9.0.1677
The Vim package contains a powerful text editor.

Approximate build time: 2.3 SBU
Required disk space: 229 MB

Alternatives to Vim

If you prefer another editor—such as Emacs, Joe, or Nano—please refer to https://www.linuxfromscratch.
org/blfs/view/stable-systemd/postlfs/editors.html for suggested installation instructions.

8.71.1. Installation of Vim
First, change the default location of the vimrc configuration file to /etc:

echo '#define SYS_VIMRC_FILE "/etc/vimrc"' >> src/feature.h

Prepare Vim for compilation:

./configure --prefix=/usr

Compile the package:

make

To prepare the tests, ensure that user tester can write to the source tree:

chown -Rv tester .

Now run the tests as user tester:

su tester -c "LANG=en_US.UTF-8 make -j1 test" &> vim-test.log

The test suite outputs a lot of binary data to the screen. This can cause issues with the settings of the current terminal.
The problem can be avoided by redirecting the output to a log file as shown above. A successful test will result in the
words "ALL DONE" in the log file at completion.

Install the package:

make install

Many users reflexively type vi instead of vim. To allow execution of vim when users habitually enter vi, create a
symlink for both the binary and the man page in the provided languages:

ln -sv vim /usr/bin/vi
for L in /usr/share/man/{,*/}man1/vim.1; do
 ln -sv vim.1 $(dirname $L)/vi.1
done

By default, Vim's documentation is installed in /usr/share/vim. The following symlink allows the documentation to be
accessed via /usr/share/doc/vim-9.0.1677, making it consistent with the location of documentation for other packages:

ln -sv ../vim/vim90/doc /usr/share/doc/vim-9.0.1677

If an X Window System is going to be installed on the LFS system, it may be necessary to recompile Vim after installing
X. Vim comes with a GUI version of the editor that requires X and some additional libraries to be installed. For more
information on this process, refer to the Vim documentation and the Vim installation page in the BLFS book at https://
www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/vim.html.

207

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/editors.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/editors.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/vim.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/vim.html

Linux From Scratch - Version 12.0-systemd

8.71.2. Configuring Vim

By default, vim runs in vi-incompatible mode. This may be new to users who have used other editors in the past. The
“nocompatible” setting is included below to highlight the fact that a new behavior is being used. It also reminds those
who would change to “compatible” mode that it should be the first setting in the configuration file. This is necessary
because it changes other settings, and overrides must come after this setting. Create a default vim configuration file
by running the following:

cat > /etc/vimrc << "EOF"
" Begin /etc/vimrc

" Ensure defaults are set before customizing settings, not after
source $VIMRUNTIME/defaults.vim
let skip_defaults_vim=1

set nocompatible
set backspace=2
set mouse=
syntax on
if (&term == "xterm") || (&term == "putty")
 set background=dark
endif

" End /etc/vimrc
EOF

The set nocompatible setting makes vim behave in a more useful way (the default) than the vi-compatible manner.
Remove the “no” to keep the old vi behavior. The set backspace=2 setting allows backspacing over line breaks,
autoindents, and the start of an insert. The syntax on parameter enables vim's syntax highlighting. The set mouse=
setting enables proper pasting of text with the mouse when working in chroot or over a remote connection. Finally, the
if statement with the set background=dark setting corrects vim's guess about the background color of some terminal
emulators. This gives the highlighting a better color scheme for use on the black background of these programs.

Documentation for other available options can be obtained by running the following command:

vim -c ':options'

Note

By default, vim only installs spell-checking files for the English language. To install spell-checking files for
your preferred language, copy the .spl and optionally, the .sug files for your language and character encoding
from runtime/spell into /usr/share/vim/vim90/spell/.

To use these spell-checking files, some configuration in /etc/vimrc is needed, e.g.:

set spelllang=en,ru
set spell

For more information, see runtime/spell/README.txt.

8.71.3. Contents of Vim
Installed programs: ex (link to vim), rview (link to vim), rvim (link to vim), vi (link to vim), view (link to

vim), vim, vimdiff (link to vim), vimtutor, and xxd
Installed directory: /usr/share/vim

208

Linux From Scratch - Version 12.0-systemd

Short Descriptions

ex Starts vim in ex mode

rview Is a restricted version of view; no shell commands can be started and view cannot be suspended

rvim Is a restricted version of vim; no shell commands can be started and vim cannot be suspended

vi Link to vim

view Starts vim in read-only mode

vim Is the editor

vimdiff Edits two or three versions of a file with vim and shows differences

vimtutor Teaches the basic keys and commands of vim

xxd Creates a hex dump of the given file; it can also perform the inverse operation, so it can be used for
binary patching

209

Linux From Scratch - Version 12.0-systemd

8.72. MarkupSafe-2.1.3
MarkupSafe is a Python module that implements an XML/HTML/XHTML Markup safe string.

Approximate build time: less than 0.1 SBU
Required disk space: 548 KB

8.72.1. Installation of MarkupSafe
Compile MarkupSafe with the following command:

pip3 wheel -w dist --no-build-isolation --no-deps $PWD

This package does not come with a test suite.

Install the package:

pip3 install --no-index --no-user --find-links dist Markupsafe

8.72.2. Contents of MarkupSafe
Installed directory: /usr/lib/python3.11/site-packages/MarkupSafe-2.1.3.dist-info

210

Linux From Scratch - Version 12.0-systemd

8.73. Jinja2-3.1.2
Jinja2 is a Python module that implements a simple pythonic template language.

Approximate build time: less than 0.1 SBU
Required disk space: 3.4 MB

8.73.1. Installation of Jinja2
Build the package:

pip3 wheel -w dist --no-build-isolation --no-deps $PWD

Install the package:

pip3 install --no-index --no-user --find-links dist Jinja2

8.73.2. Contents of Jinja2
Installed directory: /usr/lib/python3.11/site-packages/Jinja2-3.1.2.dist-info

211

Linux From Scratch - Version 12.0-systemd

8.74. Systemd-254
The systemd package contains programs for controlling the startup, running, and shutdown of the system.

Approximate build time: 0.7 SBU
Required disk space: 238 MB

8.74.1. Installation of systemd
Remove two unneeded groups, render and sgx, from the default udev rules:

sed -i -e 's/GROUP="render"/GROUP="video"/' \
 -e 's/GROUP="sgx", //' rules.d/50-udev-default.rules.in

Prepare systemd for compilation:

mkdir -p build
cd build

meson setup \
 --prefix=/usr \
 --buildtype=release \
 -Ddefault-dnssec=no \
 -Dfirstboot=false \
 -Dinstall-tests=false \
 -Dldconfig=false \
 -Dsysusers=false \
 -Drpmmacrosdir=no \
 -Dhomed=false \
 -Duserdb=false \
 -Dman=false \
 -Dmode=release \
 -Dpamconfdir=no \
 -Ddev-kvm-mode=0660 \
 -Ddocdir=/usr/share/doc/systemd-254 \
 ..

The meaning of the meson options:

--buildtype=release

This switch overrides the default buildtype (“debug”), which produces unoptimized binaries.

-Ddefault-dnssec=no

This switch turns off the experimental DNSSEC support.

-Dfirstboot=false

This switch prevents installation of systemd services responsible for setting up the system for the first time. These
are not useful in LFS, because everything is done manually.

-Dinstall-tests=false

This switch prevents installation of the compiled tests.

-Dldconfig=false

This switch prevents installation of a systemd unit that runs ldconfig at boot; this is not useful for source
distributions such as LFS, and makes the boot time longer. Remove this option to enable running ldconfig at boot.

-Dsysusers=false

This switch prevents installation of systemd services responsible for setting up the /etc/group and /etc/passwd
files. Both files were created in the previous chapter. This daemon is not useful on an LFS system since user
accounts are manually created.

212

Linux From Scratch - Version 12.0-systemd

-Drpmmacrosdir=no

This switch disables installation of RPM Macros for use with systemd, because LFS does not support RPM.

-D{userdb,homed}=false

Remove two daemons with dependencies that do not fit within the scope of LFS.

-Dman=false

Prevent the generation of man pages to avoid extra dependencies. We will install pre-generated man pages for
systemd from a tarball.

-Dmode=release

Disable some features considered experimental by upstream.

-Dpamconfdir=no

Prevent the installation of a PAM configuration file not functional on LFS.

-Ddev-kvm-mode=0660

The default udev rule would allow all users to access /dev/kvm. The editors consider it dangerous. This option
overrides it.

Compile the package:

ninja

Install the package:

ninja install

Install the man pages:

tar -xf ../../systemd-man-pages-254.tar.xz \
 --no-same-owner --strip-components=1 \
 -C /usr/share/man

Create the /etc/machine-id file needed by systemd-journald:

systemd-machine-id-setup

Set up the basic target structure:

systemctl preset-all

Disable two services for upgrading binary distros. They are useless for a basic Linux system built from source, and
each one will report an error if it's enabled but not configured:

systemctl disable systemd-sysupdate{,-reboot}

213

Linux From Scratch - Version 12.0-systemd

8.74.2. Contents of systemd
Installed programs: busctl, coredumpctl, halt (symlink to systemctl), hostnamectl, init, journalctl,

kernel-install, localectl, loginctl, machinectl, mount.ddi (symlink to systemd-dissect),
networkctl, oomctl, portablectl, poweroff (symlink to systemctl), reboot (symlink
to systemctl), resolvconf (symlink to resolvectl), resolvectl, runlevel (symlink to
systemctl), shutdown (symlink to systemctl), systemctl, systemd-ac-power, systemd-
analyze, systemd-ask-password, systemd-cat, systemd-cgls, systemd-cgtop, systemd-
confext (symlink to systemd-sysext), systemd-creds, systemd-delta, systemd-detect-
virt, systemd-dissect, systemd-escape, systemd-hwdb, systemd-id128, systemd-inhibit,
systemd-machine-id-setup, systemd-mount, systemd-notify, systemd-nspawn, systemd-
path, systemd-repart, systemd-resolve (symlink to resolvectl), systemd-run, systemd-
socket-activate, systemd-stdio-bridge, systemd-sysext, systemd-tmpfiles, systemd-tty-
ask-password-agent, systemd-umount (symlink to systemd-mount), telinit (symlink to
systemctl), timedatectl, and udevadm

Installed libraries: libnss_myhostname.so.2, libnss_mymachines.so.2, libnss_resolve.so.2,
libnss_systemd.so.2, libsystemd.so, libsystemd-shared-254.so (in /usr/lib/systemd), and
libudev.so

Installed directories: /etc/binfmt.d, /etc/init.d, /etc/kernel, /etc/modules-load.d, /etc/sysctl.d, /etc/systemd, /
etc/tmpfiles.d, /etc/udev, /etc/xdg/systemd, /usr/lib/systemd, /usr/lib/udev, /usr/
include/systemd, /usr/lib/binfmt.d, /usr/lib/environment.d, /usr/lib/kernel, /usr/lib/
modules-load.d, /usr/lib/sysctl.d, /usr/lib/systemd, /usr/lib/tmpfiles.d, /usr/share/doc/
systemd-254, /usr/share/factory, /usr/share/systemd, /var/lib/systemd, and /var/log/
journal

Short Descriptions

busctl Is used to introspect and monitor the D-Bus bus

coredumpctl Is used to retrieve coredumps from the systemd journal

halt Normally invokes shutdown with the -h option, except when already
in run-level 0, when it tells the kernel to halt the system; it notes in the
file /var/log/wtmp that the system is being brought down

hostnamectl Is used to query and change the system hostname and related settings

init Is the first process to be started after the kernel has initialized the
hardware; init takes over the boot process and starts the processes
specified by its configuration files; in this case, it starts systemd

journalctl Is used to query the contents of the systemd journal

kernel-install Is used to add and remove kernel and initramfs images to and from /
boot; in LFS, this is done manually

localectl Is used to query and change the system locale and keyboard layout
settings

loginctl Is used to introspect and control the state of the systemd Login Manager

machinectl Is used to introspect and control the state of the systemd Virtual
Machine and Container Registration Manager

networkctl Is used to introspect and configure the state of the network links
configured by systemd-networkd

214

Linux From Scratch - Version 12.0-systemd

oomctl Controls the systemd Out Of Memory daemon

portablectl Is used to attach or detach portable services from the local system

poweroff Instructs the kernel to halt the system and switch off the computer (see
halt)

reboot Instructs the kernel to reboot the system (see halt)

resolvconf Registers DNS server and domain configuration with systemd-
resolved

resolvectl Sends control commands to the network name resolution manager, or
resolves domain names, IPv4 and IPv6 addresses, DNS records, and
services

runlevel Outputs the previous and the current run-level, as noted in the last run-
level record in /run/utmp

shutdown Brings the system down in a safe and secure manner, signaling all
processes and notifying all logged-in users

systemctl Is used to introspect and control the state of the systemd system and
service manager

systemd-ac-power Reports whether the system is connected to an external power source.

systemd-analyze Is used to analyze system startup performance, as well as identify
troublesome systemd units

systemd-ask-password Is used to query a system password or passphrase from the user, using
a message specified on the Linux command line

systemd-cat Is used to connect the STDOUT and STDERR outputs of a process with
the systemd journal

systemd-cgls Recursively shows the contents of the selected Linux control group
hierarchy in a tree

systemd-cgtop Shows the top control groups of the local Linux control group hierarchy,
ordered by their CPU, memory and disk I/O loads

systemd-creds Displays and processes credentials

systemd-delta Is used to identify and compare configuration files in /etc that override
the defaults in /usr

systemd-detect-virt Detects whether the system is being run in a virtual environment, and
adjusts udev accordingly

systemd-dissect Is used to inspect OS disk images

systemd-escape Is used to escape strings for inclusion in systemd unit names

systemd-hwdb Is used to manage the hardware database (hwdb)

systemd-id128 Generates and prints id128 (UUID) strings

systemd-inhibit Is used to execute a program with a shutdown, sleep or idle inhibitor
lock taken, preventing an action such as a system shutdown until the
process is completed

systemd-machine-id-setup Is used by system installer tools to initialize the machine ID stored in /
etc/machine-id at install time with a randomly generated ID

215

Linux From Scratch - Version 12.0-systemd

systemd-mount Is used to temporarily mount or automount disks

systemd-notify Is used by daemon scripts to notify the init system of status changes

systemd-nspawn Is used to run a command, or an entire OS, in a light-weight namespace
container

systemd-path Is used to query system and user paths

systemd-repart Is used to grow and add partitions to a partition table when systemd is
used with an OS image (e.g. a container)

systemd-resolve Is used to resolve domain names, IPV4 and IPv6 addresses, DNS
resource records, and services

systemd-run Is used to create and start a transient .service or a .scope unit and run
the specified command in it; this is useful for validating systemd units

systemd-socket-activate Is used to listen on socket devices and launch a process upon a
successful connection to the socket

systemd-sysext Activates system extension images

systemd-tmpfiles Creates, deletes, and cleans up volatile and temporary files and
directories, based on the configuration file format and location specified
in tmpfiles.d directories

systemd-umount Unmounts mount points

systemd-tty-ask-password-agent Is used to list and/or process pending systemd password requests

telinit Tells init which run-level to change to

timedatectl Is used to query and change the system clock and its settings

udevadm Is a generic udev administration tool which controls the udevd daemon,
provides info from the udev hardware database, monitors uevents, waits
for uevents to finish, tests udev configuration, and triggers uevents for
a given device

libsystemd Is the main systemd utility library

libudev Is a library to access Udev device information

216

Linux From Scratch - Version 12.0-systemd

8.75. D-Bus-1.14.8
D-Bus is a message bus system, a simple way for applications to talk to one another. D-Bus supplies both a system
daemon (for events such as "new hardware device added" or "printer queue changed") and a per-user-login-session
daemon (for general IPC needs among user applications). Also, the message bus is built on top of a general one-to-
one message passing framework, which can be used by any two applications to communicate directly (without going
through the message bus daemon).

Approximate build time: 0.1 SBU
Required disk space: 20 MB

8.75.1. Installation of D-Bus
Prepare D-Bus for compilation:

./configure --prefix=/usr \
 --sysconfdir=/etc \
 --localstatedir=/var \
 --runstatedir=/run \
 --enable-user-session \
 --disable-static \
 --disable-doxygen-docs \
 --disable-xml-docs \
 --docdir=/usr/share/doc/dbus-1.14.8 \
 --with-system-socket=/run/dbus/system_bus_socket

The meaning of the configure options:

--runstatedir=/run and --with-system-socket=/run/dbus/system_bus_socket
These cause the PID file and the system bus socket to be in /run, instead of the deprecated /var/run.

--enable-user-session

This ensures the D-Bus per-user service and socket unit files are installed for Systemd. They are not useful (but
harmless) in a base LFS installation, however they can be used once systemd is rebuilt with PAM support in BLFS.

Compile the package:

make

To test the results, issue:

make check

Many tests are disabled because they require additional packages that are not included in LFS. Instructions for running
the comprehensive test suite can be found in the BLFS book.

Install the package:

make install

Create a symlink so that D-Bus and systemd can use the same machine-id file:

ln -sfv /etc/machine-id /var/lib/dbus

8.75.2. Contents of D-Bus
Installed programs: dbus-cleanup-sockets, dbus-daemon, dbus-launch, dbus-monitor, dbus-run-session,

dbus-send, dbus-test-tool, dbus-update-activation-environment, and dbus-uuidgen
Installed libraries: libdbus-1.so
Installed directories: /etc/dbus-1, /usr/include/dbus-1.0, /usr/lib/dbus-1.0, /usr/share/dbus-1, /usr/share/doc/

dbus-1.14.8, and /var/lib/dbus

217

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/dbus.html

Linux From Scratch - Version 12.0-systemd

Short Descriptions

dbus-cleanup-sockets is used to remove leftover sockets in a directory

dbus-daemon Is the D-Bus message bus daemon

dbus-launch Starts dbus-daemon from a shell script

dbus-monitor Monitors messages passing through a D-Bus message bus

dbus-run-session Starts a session bus instance of dbus-daemon from a shell script
and starts a specified program in that session

dbus-send Sends a message to a D-Bus message bus

dbus-test-tool Is a tool to help packages test D-Bus

dbus-update-activation-environment Updates environment variables that will be set for D-Bus session
services

dbus-uuidgen Generates a universally unique ID

libdbus-1 Contains API functions used to communicate with the D-Bus
message bus

218

Linux From Scratch - Version 12.0-systemd

8.76. Man-DB-2.11.2
The Man-DB package contains programs for finding and viewing man pages.

Approximate build time: 0.2 SBU
Required disk space: 40 MB

8.76.1. Installation of Man-DB
Prepare Man-DB for compilation:

./configure --prefix=/usr \
 --docdir=/usr/share/doc/man-db-2.11.2 \
 --sysconfdir=/etc \
 --disable-setuid \
 --enable-cache-owner=bin \
 --with-browser=/usr/bin/lynx \
 --with-vgrind=/usr/bin/vgrind \
 --with-grap=/usr/bin/grap

The meaning of the configure options:

--disable-setuid

This disables making the man program setuid to user man.

--enable-cache-owner=bin

This changes ownership of the system-wide cache files to user bin.

--with-...

These three parameters are used to set some default programs. lynx is a text-based web browser (see BLFS for
installation instructions), vgrind converts program sources to Groff input, and grap is useful for typesetting graphs
in Groff documents. The vgrind and grap programs are not normally needed for viewing manual pages. They are
not part of LFS or BLFS, but you should be able to install them yourself after finishing LFS if you wish to do so.

Compile the package:

make

To test the results, issue:

make -k check

One test named man1/lexgrog.1 is known to fail.

Install the package:

make install

8.76.2. Non-English Manual Pages in LFS
The following table shows the character set that Man-DB assumes manual pages installed under /usr/share/man/<ll>
will be encoded with. In addition to this, Man-DB correctly determines if manual pages installed in that directory are
UTF-8 encoded.

Table 8.1. Expected character encoding of legacy 8-bit manual pages

Language (code) Encoding Language (code) Encoding

Danish (da) ISO-8859-1 Croatian (hr) ISO-8859-2

219

Linux From Scratch - Version 12.0-systemd

Language (code) Encoding Language (code) Encoding

German (de) ISO-8859-1 Hungarian (hu) ISO-8859-2

English (en) ISO-8859-1 Japanese (ja) EUC-JP

Spanish (es) ISO-8859-1 Korean (ko) EUC-KR

Estonian (et) ISO-8859-1 Lithuanian (lt) ISO-8859-13

Finnish (fi) ISO-8859-1 Latvian (lv) ISO-8859-13

French (fr) ISO-8859-1 Macedonian (mk) ISO-8859-5

Irish (ga) ISO-8859-1 Polish (pl) ISO-8859-2

Galician (gl) ISO-8859-1 Romanian (ro) ISO-8859-2

Indonesian (id) ISO-8859-1 Greek (el) ISO-8859-7

Icelandic (is) ISO-8859-1 Slovak (sk) ISO-8859-2

Italian (it) ISO-8859-1 Slovenian (sl) ISO-8859-2

Norwegian Bokmal
(nb)

ISO-8859-1 Serbian Latin (sr@latin) ISO-8859-2

Dutch (nl) ISO-8859-1 Serbian (sr) ISO-8859-5

Norwegian Nynorsk
(nn)

ISO-8859-1 Turkish (tr) ISO-8859-9

Norwegian (no) ISO-8859-1 Ukrainian (uk) KOI8-U

Portuguese (pt) ISO-8859-1 Vietnamese (vi) TCVN5712-1

Swedish (sv) ISO-8859-1 Simplified Chinese (zh_CN) GBK

Belarusian (be) CP1251 Simplified Chinese, Singapore
(zh_SG)

GBK

Bulgarian (bg) CP1251 Traditional Chinese, Hong Kong
(zh_HK)

BIG5HKSCS

Czech (cs) ISO-8859-2 Traditional Chinese (zh_TW) BIG5

Note

Manual pages in languages not in the list are not supported.

8.76.3. Contents of Man-DB
Installed programs: accessdb, apropos (link to whatis), catman, lexgrog, man, man-recode, mandb, manpath,

and whatis
Installed libraries: libman.so and libmandb.so (both in /usr/lib/man-db)
Installed directories: /usr/lib/man-db, /usr/libexec/man-db, and /usr/share/doc/man-db-2.11.2

Short Descriptions

accessdb Dumps the whatis database contents in human-readable form

apropos Searches the whatis database and displays the short descriptions of system commands that contain
a given string

220

Linux From Scratch - Version 12.0-systemd

catman Creates or updates the pre-formatted manual pages

lexgrog Displays one-line summary information about a given manual page

man Formats and displays the requested manual page

man-recode Converts manual pages to another encoding

mandb Creates or updates the whatis database

manpath Displays the contents of $MANPATH or (if $MANPATH is not set) a suitable search path based on
the settings in man.conf and the user's environment

whatis Searches the whatis database and displays the short descriptions of system commands that contain
the given keyword as a separate word

libman Contains run-time support for man

libmandb Contains run-time support for man

221

Linux From Scratch - Version 12.0-systemd

8.77. Procps-ng-4.0.3
The Procps-ng package contains programs for monitoring processes.

Approximate build time: 0.1 SBU
Required disk space: 25 MB

8.77.1. Installation of Procps-ng
Prepare Procps-ng for compilation:

./configure --prefix=/usr \
 --docdir=/usr/share/doc/procps-ng-4.0.3 \
 --disable-static \
 --disable-kill \
 --with-systemd

The meaning of the configure option:

--disable-kill

This switch disables building the kill command; it will be installed from the Util-linux package.

Compile the package:

make

To run the test suite, run:

make check

Install the package:

make install

8.77.2. Contents of Procps-ng
Installed programs: free, pgrep, pidof, pkill, pmap, ps, pwdx, slabtop, sysctl, tload, top, uptime, vmstat, w,

and watch
Installed library: libproc-2.so
Installed directories: /usr/include/procps and /usr/share/doc/procps-ng-4.0.3

Short Descriptions

free Reports the amount of free and used memory (both physical and swap memory) in the system

pgrep Looks up processes based on their name and other attributes

pidof Reports the PIDs of the given programs

pkill Signals processes based on their name and other attributes

pmap Reports the memory map of the given process

ps Lists the current running processes

pwdx Reports the current working directory of a process

slabtop Displays detailed kernel slab cache information in real time

sysctl Modifies kernel parameters at run time

222

Linux From Scratch - Version 12.0-systemd

tload Prints a graph of the current system load average

top Displays a list of the most CPU intensive processes; it provides an ongoing look at processor activity
in real time

uptime Reports how long the system has been running, how many users are logged on, and the system load
averages

vmstat Reports virtual memory statistics, giving information about processes, memory, paging, block Input/
Output (IO), traps, and CPU activity

w Shows which users are currently logged on, where, and since when

watch Runs a given command repeatedly, displaying the first screen-full of its output; this allows a user to
watch the output change over time

libproc-2 Contains the functions used by most programs in this package

223

Linux From Scratch - Version 12.0-systemd

8.78. Util-linux-2.39.1
The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems,
consoles, partitions, and messages.

Approximate build time: 0.5 SBU
Required disk space: 310 MB

8.78.1. Installation of Util-linux
First, disable a problem test:

sed -i '/test_mkfds/s/^/#/' tests/helpers/Makemodule.am

Prepare Util-linux for compilation:

./configure ADJTIME_PATH=/var/lib/hwclock/adjtime \
 --bindir=/usr/bin \
 --libdir=/usr/lib \
 --runstatedir=/run \
 --sbindir=/usr/sbin \
 --disable-chfn-chsh \
 --disable-login \
 --disable-nologin \
 --disable-su \
 --disable-setpriv \
 --disable-runuser \
 --disable-pylibmount \
 --disable-static \
 --without-python \
 --docdir=/usr/share/doc/util-linux-2.39.1

The --disable and --without options prevent warnings about building components that either require packages not in
LFS, or are inconsistent with programs installed by other packages.

Compile the package:

make

If desired, run the test suite as a non-root user:

Warning

Running the test suite as the root user can be harmful to your system. To run it, the CONFIG_SCSI_DEBUG
option for the kernel must be available in the currently running system and must be built as a module. Building
it into the kernel will prevent booting. For complete coverage, other BLFS packages must be installed. If
desired, this test can be run by booting into the completed LFS system and running:

bash tests/run.sh --srcdir=$PWD --builddir=$PWD

chown -Rv tester .
su tester -c "make -k check"

The hardlink tests will fail if the host's kernel does not have the option CONFIG_CRYPTO_USER_API_HASH enabled or does
not have any options providing a SHA256 implementation (for example, CONFIG_CRYPTO_SHA256, or CONFIG_CRYPTO_
SHA256_SSSE3 if the CPU supports Supplemental SSE3) enabled. In addition, two sub-tests from misc: mbsencode and
one sub-test from script: replay are known to fail.

224

Linux From Scratch - Version 12.0-systemd

Install the package:

make install

8.78.2. Contents of Util-linux
Installed programs: addpart, agetty, blkdiscard, blkid, blkzone, blockdev, cal, cfdisk, chcpu, chmem, choom,

chrt, col, colcrt, colrm, column, ctrlaltdel, delpart, dmesg, eject, fallocate, fdisk, fincore,
findfs, findmnt, flock, fsck, fsck.cramfs, fsck.minix, fsfreeze, fstrim, getopt, hardlink,
hexdump, hwclock, i386 (link to setarch), ionice, ipcmk, ipcrm, ipcs, irqtop, isosize, kill,
last, lastb (link to last), ldattach, linux32 (link to setarch), linux64 (link to setarch), logger,
look, losetup, lsblk, lscpu, lsipc, lsirq, lsfd, lslocks, lslogins, lsmem, lsns, mcookie,
mesg, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix, mkswap, more, mount, mountpoint,
namei, nsenter, partx, pivot_root, prlimit, readprofile, rename, renice, resizepart, rev,
rfkill, rtcwake, script, scriptlive, scriptreplay, setarch, setsid, setterm, sfdisk, sulogin,
swaplabel, swapoff, swapon, switch_root, taskset, uclampset, ul, umount, uname26 (link
to setarch), unshare, utmpdump, uuidd, uuidgen, uuidparse, wall, wdctl, whereis, wipefs,
x86_64 (link to setarch), and zramctl

Installed libraries: libblkid.so, libfdisk.so, libmount.so, libsmartcols.so, and libuuid.so
Installed directories: /usr/include/blkid, /usr/include/libfdisk, /usr/include/libmount, /usr/include/

libsmartcols, /usr/include/uuid, /usr/share/doc/util-linux-2.39.1, and /var/lib/hwclock

Short Descriptions

addpart Informs the Linux kernel of new partitions

agetty Opens a tty port, prompts for a login name, and then invokes the login program

blkdiscard Discards sectors on a device

blkid A command line utility to locate and print block device attributes

blkzone Is used to manage zoned storage block devices

blockdev Allows users to call block device ioctls from the command line

cal Displays a simple calendar

cfdisk Manipulates the partition table of the given device

chcpu Modifies the state of CPUs

chmem Configures memory

choom Displays and adjusts OOM-killer scores, used to determine which process to kill first when Linux
is Out Of Memory

chrt Manipulates real-time attributes of a process

col Filters out reverse line feeds

colcrt Filters nroff output for terminals that lack some capabilities, such as overstriking and half-lines

colrm Filters out the given columns

column Formats a given file into multiple columns

ctrlaltdel Sets the function of the Ctrl+Alt+Del key combination to a hard or a soft reset

delpart Asks the Linux kernel to remove a partition

225

Linux From Scratch - Version 12.0-systemd

dmesg Dumps the kernel boot messages

eject Ejects removable media

fallocate Preallocates space to a file

fdisk Manipulates the partition table of the given device

fincore Counts pages of file contents in core

findfs Finds a file system, either by label or Universally Unique Identifier (UUID)

findmnt Is a command line interface to the libmount library for working with mountinfo, fstab and mtab files

flock Acquires a file lock and then executes a command with the lock held

fsck Is used to check, and optionally repair, file systems

fsck.cramfs Performs a consistency check on the Cramfs file system on the given device

fsck.minix Performs a consistency check on the Minix file system on the given device

fsfreeze Is a very simple wrapper around FIFREEZE/FITHAW ioctl kernel driver operations

fstrim Discards unused blocks on a mounted filesystem

getopt Parses options in the given command line

hardlink Consolidates duplicate files by creating hard links

hexdump Dumps the given file in hexadecimal, decimal, octal, or ascii

hwclock Reads or sets the system's hardware clock, also called the Real-Time Clock (RTC) or Basic Input-
Output System (BIOS) clock

i386 A symbolic link to setarch

ionice Gets or sets the io scheduling class and priority for a program

ipcmk Creates various IPC resources

ipcrm Removes the given Inter-Process Communication (IPC) resource

ipcs Provides IPC status information

irqtop Displays kernel interrupt counter information in top(1) style view

isosize Reports the size of an iso9660 file system

kill Sends signals to processes

last Shows which users last logged in (and out), searching back through the /var/log/wtmp file; it also
shows system boots, shutdowns, and run-level changes

lastb Shows the failed login attempts, as logged in /var/log/btmp

ldattach Attaches a line discipline to a serial line

linux32 A symbolic link to setarch

linux64 A symbolic link to setarch

logger Enters the given message into the system log

look Displays lines that begin with the given string

losetup Sets up and controls loop devices

lsblk Lists information about all or selected block devices in a tree-like format

226

Linux From Scratch - Version 12.0-systemd

lscpu Prints CPU architecture information

lsfd Displays information about open files; replaces lsof

lsipc Prints information on IPC facilities currently employed in the system

lsirq Displays kernel interrupt counter information

lslocks Lists local system locks

lslogins Lists information about users, groups and system accounts

lsmem Lists the ranges of available memory with their online status

lsns Lists namespaces

mcookie Generates magic cookies (128-bit random hexadecimal numbers) for xauth

mesg Controls whether other users can send messages to the current user's terminal

mkfs Builds a file system on a device (usually a hard disk partition)

mkfs.bfs Creates a Santa Cruz Operations (SCO) bfs file system

mkfs.cramfs Creates a cramfs file system

mkfs.minix Creates a Minix file system

mkswap Initializes the given device or file to be used as a swap area

more A filter for paging through text one screen at a time

mount Attaches the file system on the given device to a specified directory in the file-system tree

mountpoint Checks if the directory is a mountpoint

namei Shows the symbolic links in the given paths

nsenter Runs a program with namespaces of other processes

partx Tells the kernel about the presence and numbering of on-disk partitions

pivot_root Makes the given file system the new root file system of the current process

prlimit Gets and sets a process's resource limits

readprofile Reads kernel profiling information

rename Renames the given files, replacing a given string with another

renice Alters the priority of running processes

resizepart Asks the Linux kernel to resize a partition

rev Reverses the lines of a given file

rfkill Tool for enabling and disabling wireless devices

rtcwake Used to enter a system sleep state until the specified wakeup time

script Makes a typescript of a terminal session

scriptlive Re-runs session typescripts using timing information

scriptreplay Plays back typescripts using timing information

setarch Changes reported architecture in a new program environment, and sets personality flags

setsid Runs the given program in a new session

setterm Sets terminal attributes

227

Linux From Scratch - Version 12.0-systemd

sfdisk A disk partition table manipulator

sulogin Allows root to log in; it is normally invoked by init when the system goes into single user mode

swaplabel Makes changes to the swap area's UUID and label

swapoff Disables devices and files for paging and swapping

swapon Enables devices and files for paging and swapping, and lists the devices and files currently in use

switch_root Switches to another filesystem as the root of the mount tree

taskset Retrieves or sets a process's CPU affinity

uclampset Manipulates the utilization clamping attributes of the system or a process

ul A filter for translating underscores into escape sequences indicating underlining for the terminal
in use

umount Disconnects a file system from the system's file tree

uname26 A symbolic link to setarch

unshare Runs a program with some namespaces unshared from parent

utmpdump Displays the content of the given login file in a user-friendly format

uuidd A daemon used by the UUID library to generate time-based UUIDs in a secure and guaranteed-
unique fashion

uuidgen Creates new UUIDs. Each new UUID is a random number likely to be unique among all UUIDs
created, on the local system and on other systems, in the past and in the future, with extremely high
probability (~340 trillion trillion trillion unique UUIDs are possible)

uuidparse A utility to parse unique identifiers

wall Displays the contents of a file or, by default, its standard input, on the terminals of all currently
logged in users

wdctl Shows hardware watchdog status

whereis Reports the location of the binary, source, and man page files for the given command

wipefs Wipes a filesystem signature from a device

x86_64 A symbolic link to setarch

zramctl A program to set up and control zram (compressed ram disk) devices

libblkid Contains routines for device identification and token extraction

libfdisk Contains routines for manipulating partition tables

libmount Contains routines for block device mounting and unmounting

libsmartcols Contains routines for aiding screen output in tabular form

libuuid Contains routines for generating unique identifiers for objects that may be accessible beyond the
local system

228

Linux From Scratch - Version 12.0-systemd

8.79. E2fsprogs-1.47.0
The E2fsprogs package contains the utilities for handling the ext2 file system. It also supports the ext3 and ext4
journaling file systems.

Approximate build time: 2.4 SBU on a spinning disk, 0.6 SBU on an SSD
Required disk space: 95 MB

8.79.1. Installation of E2fsprogs
The E2fsprogs documentation recommends that the package be built in a subdirectory of the source tree:

mkdir -v build
cd build

Prepare E2fsprogs for compilation:

../configure --prefix=/usr \
 --sysconfdir=/etc \
 --enable-elf-shlibs \
 --disable-libblkid \
 --disable-libuuid \
 --disable-uuidd \
 --disable-fsck

The meaning of the configure options:

--enable-elf-shlibs

This creates the shared libraries which some programs in this package use.

--disable-*

These prevent building and installing the libuuid and libblkid libraries, the uuidd daemon, and the fsck wrapper;
util-linux installs more recent versions.

Compile the package:

make

To run the tests, issue:

make check

One test named m_assume_storage_prezeroed is known to fail.

Install the package:

make install

Remove useless static libraries:

rm -fv /usr/lib/{libcom_err,libe2p,libext2fs,libss}.a

This package installs a gzipped .info file but doesn't update the system-wide dir file. Unzip this file and then update
the system dir file using the following commands:

gunzip -v /usr/share/info/libext2fs.info.gz
install-info --dir-file=/usr/share/info/dir /usr/share/info/libext2fs.info

If desired, create and install some additional documentation by issuing the following commands:

makeinfo -o doc/com_err.info ../lib/et/com_err.texinfo
install -v -m644 doc/com_err.info /usr/share/info
install-info --dir-file=/usr/share/info/dir /usr/share/info/com_err.info

229

Linux From Scratch - Version 12.0-systemd

8.79.2. Configuring E2fsprogs
/etc/mke2fs.conf contains the default value of various command line options of mke2fs. You may edit the file to make
the default values suitable for your need. For example, some utilities (not in LFS or BLFS) cannot recognize a ext4
file system with metadata_csum_seed feature enabled. If you need such an utility, you may remove the feature from the
default ext4 feature list with the command:

sed 's/metadata_csum_seed,//' -i /etc/mke2fs.conf

Read the man page mke2fs.conf(5) for details.

8.79.3. Contents of E2fsprogs
Installed programs: badblocks, chattr, compile_et, debugfs, dumpe2fs, e2freefrag, e2fsck, e2image, e2label,

e2mmpstatus, e2scrub, e2scrub_all, e2undo, e4crypt, e4defrag, filefrag, fsck.ext2,
fsck.ext3, fsck.ext4, logsave, lsattr, mk_cmds, mke2fs, mkfs.ext2, mkfs.ext3, mkfs.ext4,
mklost+found, resize2fs, and tune2fs

Installed libraries: libcom_err.so, libe2p.so, libext2fs.so, and libss.so
Installed directories: /usr/include/e2p, /usr/include/et, /usr/include/ext2fs, /usr/include/ss, /usr/lib/e2fsprogs, /

usr/share/et, and /usr/share/ss

Short Descriptions

badblocks Searches a device (usually a disk partition) for bad blocks

chattr Changes the attributes of files on ext{234} file systems

compile_et An error table compiler; it converts a table of error-code names and messages into a C source file
suitable for use with the com_err library

debugfs A file system debugger; it can be used to examine and change the state of ext{234} file systems

dumpe2fs Prints the super block and blocks group information for the file system present on a given device

e2freefrag Reports free space fragmentation information

e2fsck Is used to check and optionally repair ext{234} file systems

e2image Is used to save critical ext{234} file system data to a file

e2label Displays or changes the file system label on the ext{234} file system on a given device

e2mmpstatus Checks MMP (Multiple Mount Protection) status of an ext4 file system

e2scrub Checks the contents of a mounted ext{234} file system

e2scrub_all Checks all mounted ext{234} file systems for errors

e2undo Replays the undo log for an ext{234} file system found on a device. [This can be used to undo a
failed operation by an E2fsprogs program.]

e4crypt Ext4 file system encryption utility

e4defrag Online defragmenter for ext4 file systems

filefrag Reports on how badly fragmented a particular file might be

fsck.ext2 By default checks ext2 file systems and is a hard link to e2fsck

fsck.ext3 By default checks ext3 file systems and is a hard link to e2fsck

fsck.ext4 By default checks ext4 file systems and is a hard link to e2fsck

230

Linux From Scratch - Version 12.0-systemd

logsave Saves the output of a command in a log file

lsattr Lists the attributes of files on a second extended file system

mk_cmds Converts a table of command names and help messages into a C source file suitable for use with
the libss subsystem library

mke2fs Creates an ext{234} file system on the given device

mkfs.ext2 By default creates ext2 file systems and is a hard link to mke2fs

mkfs.ext3 By default creates ext3 file systems and is a hard link to mke2fs

mkfs.ext4 By default creates ext4 file systems and is a hard link to mke2fs

mklost+found Creates a lost+found directory on an ext{234} file system; it pre-allocates disk blocks to this
directory to lighten the task of e2fsck

resize2fs Can be used to enlarge or shrink ext{234} file systems

tune2fs Adjusts tunable file system parameters on ext{234} file systems

libcom_err The common error display routine

libe2p Used by dumpe2fs, chattr, and lsattr

libext2fs Contains routines to enable user-level programs to manipulate ext{234} file systems

libss Used by debugfs

231

Linux From Scratch - Version 12.0-systemd

8.80. About Debugging Symbols
Most programs and libraries are, by default, compiled with debugging symbols included (with gcc's -g option). This
means that when debugging a program or library that was compiled with debugging information, the debugger can
provide not only memory addresses, but also the names of the routines and variables.

The inclusion of these debugging symbols enlarges a program or library significantly. Here are two examples of the
amount of space these symbols occupy:

• A bash binary with debugging symbols: 1200 KB

• A bash binary without debugging symbols: 480 KB (60% smaller)

• Glibc and GCC files (/lib and /usr/lib) with debugging symbols: 87 MB

• Glibc and GCC files without debugging symbols: 16 MB (82% smaller)

Sizes will vary depending on which compiler and C library were used, but a program that has been stripped of debugging
symbols is usually some 50% to 80% smaller than its unstripped counterpart. Because most users will never use a
debugger on their system software, a lot of disk space can be regained by removing these symbols. The next section
shows how to strip all debugging symbols from the programs and libraries.

8.81. Stripping
This section is optional. If the intended user is not a programmer and does not plan to do any debugging of the system
software, the system's size can be decreased by some 2 GB by removing the debugging symbols, and some unnecessary
symbol table entries, from binaries and libraries. This causes no real inconvenience for a typical Linux user.

Most people who use the commands mentioned below do not experience any difficulties. However, it is easy to make a
mistake and render the new system unusable. So before running the strip commands, it is a good idea to make a backup
of the LFS system in its current state.

A strip command with the --strip-unneeded option removes all debug symbols from a binary or library. It also removes
all symbol table entries not needed by the linker (for static libraries) or dynamic linker (for dynamically linked binaries
and shared libraries).

The debugging symbols from selected libraries are preserved in separate files. That debugging information is needed
to run regression tests with valgrind or gdb later, in BLFS.

Note that strip will overwrite the binary or library file it is processing. This can crash the processes using code or data
from the file. If the process running strip is affected, the binary or library being stripped can be destroyed; this can
make the system completely unusable. To avoid this problem we copy some libraries and binaries into /tmp, strip them
there, then reinstall them with the install command. (The related entry in Section 8.2.1, “Upgrade Issues” gives the
rationale for using the install command here.)

Note

The ELF loader's name is ld-linux-x86-64.so.2 on 64-bit systems and ld-linux.so.2 on 32-bit systems. The
construct below selects the correct name for the current architecture, excluding anything ending with “g”, in
case the commands below have already been run.

232

https://www.linuxfromscratch.org/blfs/view/stable-systemd//general/valgrind.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd//general/gdb.html

Linux From Scratch - Version 12.0-systemd

Important

If there is any package whose version is different from the version specified by the book (either following
a security advisory or satisfying personal preference), it may be necessary to update the library file name in
save_usrlib or online_usrlib. Failing to do so may render the system completely unusable.

save_usrlib="$(cd /usr/lib; ls ld-linux*[^g])
 libc.so.6
 libthread_db.so.1
 libquadmath.so.0.0.0
 libstdc++.so.6.0.32
 libitm.so.1.0.0
 libatomic.so.1.2.0"

cd /usr/lib

for LIB in $save_usrlib; do
 objcopy --only-keep-debug $LIB $LIB.dbg
 cp $LIB /tmp/$LIB
 strip --strip-unneeded /tmp/$LIB
 objcopy --add-gnu-debuglink=$LIB.dbg /tmp/$LIB
 install -vm755 /tmp/$LIB /usr/lib
 rm /tmp/$LIB
done

online_usrbin="bash find strip"
online_usrlib="libbfd-2.41.so
 libsframe.so.1.0.0
 libhistory.so.8.2
 libncursesw.so.6.4
 libm.so.6
 libreadline.so.8.2
 libz.so.1.2.13
 $(cd /usr/lib; find libnss*.so* -type f)"

for BIN in $online_usrbin; do
 cp /usr/bin/$BIN /tmp/$BIN
 strip --strip-unneeded /tmp/$BIN
 install -vm755 /tmp/$BIN /usr/bin
 rm /tmp/$BIN
done

for LIB in $online_usrlib; do
 cp /usr/lib/$LIB /tmp/$LIB
 strip --strip-unneeded /tmp/$LIB
 install -vm755 /tmp/$LIB /usr/lib
 rm /tmp/$LIB
done

for i in $(find /usr/lib -type f -name *.so* ! -name *dbg) \
 $(find /usr/lib -type f -name *.a) \
 $(find /usr/{bin,sbin,libexec} -type f); do
 case "$online_usrbin $online_usrlib $save_usrlib" in
 $(basename $i))
 ;;
 *) strip --strip-unneeded $i
 ;;
 esac
done

unset BIN LIB save_usrlib online_usrbin online_usrlib

233

Linux From Scratch - Version 12.0-systemd

A large number of files will be flagged as errors because their file format is not recognized. These warnings can be
safely ignored. They indicate that those files are scripts, not binaries.

8.82. Cleaning Up
Finally, clean up some extra files left over from running tests:

rm -rf /tmp/*

There are also several files in the /usr/lib and /usr/libexec directories with a file name extension of .la. These are "libtool
archive" files. On a modern Linux system the libtool .la files are only useful for libltdl. No libraries in LFS are expected
to be loaded by libltdl, and it's known that some .la files can break BLFS package builds. Remove those files now:

find /usr/lib /usr/libexec -name *.la -delete

For more information about libtool archive files, see the BLFS section "About Libtool Archive (.la) files".

The compiler built in Chapter 6 and Chapter 7 is still partially installed and not needed anymore. Remove it with:

find /usr -depth -name $(uname -m)-lfs-linux-gnu* | xargs rm -rf

Finally, remove the temporary 'tester' user account created at the beginning of the previous chapter.

userdel -r tester

234

https://www.linuxfromscratch.org/blfs/view/stable-systemd/introduction/la-files.html

Linux From Scratch - Version 12.0-systemd

Chapter 9. System Configuration

9.1. Introduction
This chapter discusses configuration files and systemd services. First, the general configuration files needed to set up
networking are presented.

• Section 9.2, “General Network Configuration.”

• Section 9.2.3, “Configuring the system hostname.”

• Section 9.2.4, “Customizing the /etc/hosts File.”

Second, issues that affect the proper setup of devices are discussed.

• Section 9.3, “Overview of Device and Module Handling.”

• Section 9.4, “Managing Devices.”

Third, configuring the system clock and keyboard layout is shown.

• Section 9.5, “Configuring the system clock.”

• Section 9.6, “Configuring the Linux Console.”

Fourth, a brief introduction to the scripts and configuration files used when the user logs into the system is presented.

• Section 9.7, “Configuring the System Locale.”

• Section 9.8, “Creating the /etc/inputrc File.”

And finally, configuring the behavior of systemd is discussed.

• Section 9.10, “Systemd Usage and Configuration.”

9.2. General Network Configuration
This section only applies if a network card is to be configured.

9.2.1. Network Interface Configuration Files
Starting with version 209, systemd ships a network configuration daemon called systemd-networkd which can be used
for basic network configuration. Additionally, since version 213, DNS name resolution can be handled by systemd-
resolved in place of a static /etc/resolv.conf file. Both services are enabled by default.

Note

If you will not use systemd-networkd for network configuration (for example, when the system is not
connected to network, or you want to use another utility like NetworkManager for network configuration),
disable a service to prevent an error message during boot:

systemctl disable systemd-networkd-wait-online

Configuration files for systemd-networkd (and systemd-resolved) can be placed in /usr/lib/systemd/network or /
etc/systemd/network. Files in /etc/systemd/network have a higher priority than the ones in /usr/lib/systemd/network.
There are three types of configuration files: .link, .netdev and .network files. For detailed descriptions and example
contents of these configuration files, consult the systemd-link(5), systemd-netdev(5) and systemd-network(5) manual
pages.

235

Linux From Scratch - Version 12.0-systemd

9.2.1.1. Network Device Naming

Udev normally assigns network card interface names based on physical system characteristics such as enp2s1. If you
are not sure what your interface name is, you can always run ip link after you have booted your system.

Note

The interface names depend on the implementation and configuration of the udev daemon running on the
system. The udev daemon for LFS (systemd-udevd, installed in Section 8.74, “Systemd-254”) will not run
unless the LFS system is booted. So it's unreliable to determine the interface names being used in LFS system
by running those commands on the host distro, even though you are in the chroot environment.

For most systems, there is only one network interface for each type of connection. For example, the classic interface
name for a wired connection is eth0. A wireless connection will usually have the name wifi0 or wlan0.

If you prefer to use the classic or customized network interface names, there are three alternative ways to do that:

• Mask udev's .link file for the default policy:

ln -s /dev/null /etc/systemd/network/99-default.link

• Create a manual naming scheme, for example by naming the interfaces something like "internet0", "dmz0", or
"lan0". To do that, create .link files in /etc/systemd/network/ that select an explicit name or a better naming scheme
for your network interfaces. For example:

cat > /etc/systemd/network/10-ether0.link << "EOF"
[Match]
Change the MAC address as appropriate for your network device
MACAddress=12:34:45:78:90:AB

[Link]
Name=ether0
EOF

See the man page systemd.link(5) for more information.

• In /boot/grub/grub.cfg, pass the option net.ifnames=0 on the kernel command line.

9.2.1.2. Static IP Configuration

The command below creates a basic configuration file for a Static IP setup (using both systemd-networkd and systemd-
resolved):

cat > /etc/systemd/network/10-eth-static.network << "EOF"
[Match]
Name=<network-device-name>

[Network]
Address=192.168.0.2/24
Gateway=192.168.0.1
DNS=192.168.0.1
Domains=<Your Domain Name>
EOF

Multiple DNS entries can be added if you have more than one DNS server. Do not include DNS or Domains entries
if you intend to use a static /etc/resolv.conf file.

236

Linux From Scratch - Version 12.0-systemd

9.2.1.3. DHCP Configuration

The command below creates a basic configuration file for an IPv4 DHCP setup:

cat > /etc/systemd/network/10-eth-dhcp.network << "EOF"
[Match]
Name=<network-device-name>

[Network]
DHCP=ipv4

[DHCPv4]
UseDomains=true
EOF

9.2.2. Creating the /etc/resolv.conf File

If the system is going to be connected to the Internet, it will need some means of Domain Name Service (DNS) name
resolution to resolve Internet domain names to IP addresses, and vice versa. This is best achieved by placing the IP
address of the DNS server, available from the ISP or network administrator, into /etc/resolv.conf.

9.2.2.1. systemd-resolved Configuration

Note

If using methods incompatible with systemd-resolved to configure your network interfaces (ex: ppp, etc.), or
if using any type of local resolver (ex: bind, dnsmasq, unbound, etc.), or any other software that generates an
/etc/resolv.conf (ex: a resolvconf program other than the one provided by systemd), the systemd-resolved
service should not be used.

To disable systemd-resolved, issue the following command:

systemctl disable systemd-resolved

When using systemd-resolved for DNS configuration, it creates the file /run/systemd/resolve/stub-resolv.conf.
And, if /etc/resolv.conf does not exist, it will be created by systemd-resolved as a symlink to /run/systemd/resolve/
stub-resolv.conf. So it's unnecessary to create a /etc/resolv.conf manually.

9.2.2.2. Static resolv.conf Configuration

If a static /etc/resolv.conf is desired, create it by running the following command:

cat > /etc/resolv.conf << "EOF"
Begin /etc/resolv.conf

domain <Your Domain Name>
nameserver <IP address of your primary nameserver>
nameserver <IP address of your secondary nameserver>

End /etc/resolv.conf
EOF

The domain statement can be omitted or replaced with a search statement. See the man page for resolv.conf for more
details.

237

Linux From Scratch - Version 12.0-systemd

Replace <IP address of the nameserver> with the IP address of the DNS server most appropriate for your setup. There
will often be more than one entry (requirements demand secondary servers for fallback capability). If you only need
or want one DNS server, remove the second nameserver line from the file. The IP address may also be a router on the
local network. Another option is to use the Google Public DNS service using the IP addresses below as nameservers.

Note

The Google Public IPv4 DNS addresses are 8.8.8.8 and 8.8.4.4 for IPv4, and 2001:4860:4860::8888 and
2001:4860:4860::8844 for IPv6.

9.2.3. Configuring the system hostname
During the boot process, the file /etc/hostname is used for establishing the system's hostname.

Create the /etc/hostname file and enter a hostname by running:

echo "<lfs>" > /etc/hostname

<lfs> needs to be replaced with the name given to the computer. Do not enter the Fully Qualified Domain Name
(FQDN) here. That information is put in the /etc/hosts file.

9.2.4. Customizing the /etc/hosts File
Decide on a fully-qualified domain name (FQDN), and possible aliases for use in the /etc/hosts file. If using static IP
addresses, you'll also need to decide on an IP address. The syntax for a hosts file entry is:

IP_address myhost.example.org aliases

Unless the computer is to be visible to the Internet (i.e., there is a registered domain and a valid block of assigned
IP addresses—most users do not have this), make sure that the IP address is in the private network IP address range.
Valid ranges are:

Private Network Address Range Normal Prefix
10.0.0.1 - 10.255.255.254 8
172.x.0.1 - 172.x.255.254 16
192.168.y.1 - 192.168.y.254 24

x can be any number in the range 16-31. y can be any number in the range 0-255.

A valid private IP address could be 192.168.1.1. A valid FQDN for this IP could be lfs.example.org.

Even if not using a network card, a valid FQDN is still required. This is necessary for certain programs, such as MTAs,
to operate properly.

Create the /etc/hosts file using the following command:

cat > /etc/hosts << "EOF"
Begin /etc/hosts

127.0.0.1 localhost.localdomain localhost
127.0.1.1 <FQDN> <HOSTNAME>
<192.168.0.2> <FQDN> <HOSTNAME> [alias1] [alias2] ...
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

End /etc/hosts
EOF

238

Linux From Scratch - Version 12.0-systemd

The <192.168.0.2>, <FQDN>, and <HOSTNAME> values need to be changed for specific uses or requirements (if assigned an
IP address by a network/system administrator and the machine will be connected to an existing network). The optional
alias name(s) can be omitted, and the <192.168.0.2> line can be omitted if you are using a connection configured with
DHCP or IPv6 Autoconfiguration.

The ::1 entry is the IPv6 counterpart of 127.0.0.1 and represents the IPv6 loopback interface. 127.0.1.1 is a loopback
entry reserved specifically for the FQDN.

9.3. Overview of Device and Module Handling
In Chapter 8, we installed the udev daemon when systemd was built. Before we go into the details regarding how udev
works, a brief history of previous methods of handling devices is in order.

Linux systems in general traditionally used a static device creation method, whereby a great many device nodes were
created under /dev (sometimes literally thousands of nodes), regardless of whether the corresponding hardware devices
actually existed. This was typically done via a MAKEDEV script, which contained a number of calls to the mknod
program with the relevant major and minor device numbers for every possible device that might exist in the world.

Using the udev method, device nodes are only created for those devices which are detected by the kernel. These device
nodes are created each time the system boots; they are stored in a devtmpfs file system (a virtual file system that resides
entirely in system memory). Device nodes do not require much space, so the memory that is used is negligible.

9.3.1. History

In February 2000, a new filesystem called devfs was merged into the 2.3.46 kernel and was made available during
the 2.4 series of stable kernels. Although it was present in the kernel source itself, this method of creating devices
dynamically never received overwhelming support from the core kernel developers.

The main problem with the approach adopted by devfs was the way it handled device detection, creation, and naming.
The latter issue, that of device node naming, was perhaps the most critical. It is generally accepted that if device names
are configurable, the device naming policy should be chosen by system administrators, and not imposed on them by the
developer(s). The devfs file system also suffered from race conditions that were inherent in its design; these could not
be fixed without a substantial revision of the kernel. devfs was marked as deprecated for a long time, and was finally
removed from the kernel in June, 2006.

With the development of the unstable 2.5 kernel tree, later released as the 2.6 series of stable kernels, a new
virtual filesystem called sysfs came to be. The job of sysfs is to provide information about the system's hardware
configuration to userspace processes. With this userspace-visible representation, it became possible to develop a
userspace replacement for devfs.

9.3.2. Udev Implementation

9.3.2.1. Sysfs

The sysfs filesystem was mentioned briefly above. One may wonder how sysfs knows about the devices present on a
system and what device numbers should be used for them. Drivers that have been compiled into the kernel register their
objects in sysfs (devtmpfs internally) as they are detected by the kernel. For drivers compiled as modules, registration
happens when the module is loaded. Once the sysfs filesystem is mounted (on /sys), data which the drivers have
registered with sysfs are available to userspace processes and to udevd for processing (including modifications to
device nodes).

239

Linux From Scratch - Version 12.0-systemd

9.3.2.2. Device Node Creation

Device files are created by the kernel in the devtmpfs file system. Any driver that wishes to register a device node will
use the devtmpfs (via the driver core) to do it. When a devtmpfs instance is mounted on /dev, the device node will
initially be exposed to userspace with a fixed name, permissions, and owner.

A short time later, the kernel will send a uevent to udevd. Based on the rules specified in the files within the /etc/
udev/rules.d, /usr/lib/udev/rules.d, and /run/udev/rules.d directories, udevd will create additional symlinks to
the device node, or change its permissions, owner, or group, or modify the internal udevd database entry (name) for
that object.

The rules in these three directories are numbered and all three directories are merged together. If udevd can't find a
rule for the device it is creating, it will leave the permissions and ownership at whatever devtmpfs used initially.

9.3.2.3. Module Loading

Device drivers compiled as modules may have aliases built into them. Aliases are visible in the output of the modinfo
program and are usually related to the bus-specific identifiers of devices supported by a module. For example,
the snd-fm801 driver supports PCI devices with vendor ID 0x1319 and device ID 0x0801, and has an alias of
“pci:v00001319d00000801sv*sd*bc04sc01i*”. For most devices, the bus driver exports the alias of the driver that
would handle the device via sysfs. E.g., the /sys/bus/pci/devices/0000:00:0d.0/modalias file might contain the
string “pci:v00001319d00000801sv00001319sd00001319bc04sc01i00”. The default rules provided with udev will
cause udevd to call out to /sbin/modprobe with the contents of the MODALIAS uevent environment variable (which
should be the same as the contents of the modalias file in sysfs), thus loading all modules whose aliases match this
string after wildcard expansion.

In this example, this means that, in addition to snd-fm801, the obsolete (and unwanted) forte driver will be loaded if it
is available. See below for ways in which the loading of unwanted drivers can be prevented.

The kernel itself is also able to load modules for network protocols, filesystems, and NLS support on demand.

9.3.2.4. Handling Hotpluggable/Dynamic Devices

When you plug in a device, such as a Universal Serial Bus (USB) MP3 player, the kernel recognizes that the device is
now connected and generates a uevent. This uevent is then handled by udevd as described above.

9.3.3. Problems with Loading Modules and Creating Devices
There are a few possible problems when it comes to automatically creating device nodes.

9.3.3.1. A Kernel Module Is Not Loaded Automatically

Udev will only load a module if it has a bus-specific alias and the bus driver properly exports the necessary aliases to
sysfs. In other cases, one should arrange module loading by other means. With Linux-6.4.12, udev is known to load
properly-written drivers for INPUT, IDE, PCI, USB, SCSI, SERIO, and FireWire devices.

To determine if the device driver you require has the necessary support for udev, run modinfo with the module name
as the argument. Now try locating the device directory under /sys/bus and check whether there is a modalias file there.

If the modalias file exists in sysfs, the driver supports the device and can talk to it directly, but doesn't have the alias,
it is a bug in the driver. Load the driver without the help from udev and expect the issue to be fixed later.

If there is no modalias file in the relevant directory under /sys/bus, this means that the kernel developers have not yet
added modalias support to this bus type. With Linux-6.4.12, this is the case with ISA busses. Expect this issue to be
fixed in later kernel versions.

240

Linux From Scratch - Version 12.0-systemd

Udev is not intended to load “wrapper” drivers such as snd-pcm-oss and non-hardware drivers such as loop at all.

9.3.3.2. A Kernel Module Is Not Loaded Automatically, and Udev Is Not Intended to Load It

If the “wrapper” module only enhances the functionality provided by some other module (e.g., snd-pcm-oss enhances
the functionality of snd-pcm by making the sound cards available to OSS applications), configure modprobe to load
the wrapper after udev loads the wrapped module. To do this, add a “softdep” line to the corresponding /etc/modprobe.
d/<filename>.conf file. For example:

softdep snd-pcm post: snd-pcm-oss

Note that the “softdep” command also allows pre: dependencies, or a mixture of both pre: and post: dependencies.
See the modprobe.d(5) manual page for more information on “softdep” syntax and capabilities.

9.3.3.3. Udev Loads Some Unwanted Module

Either don't build the module, or blacklist it in a /etc/modprobe.d/blacklist.conf file as done with the forte module
in the example below:

blacklist forte

Blacklisted modules can still be loaded manually with the explicit modprobe command.

9.3.3.4. Udev Creates a Device Incorrectly, or Makes the Wrong Symlink

This usually happens if a rule unexpectedly matches a device. For example, a poorly-written rule can match both a
SCSI disk (as desired) and the corresponding SCSI generic device (incorrectly) by vendor. Find the offending rule and
make it more specific, with the help of the udevadm info command.

9.3.3.5. Udev Rule Works Unreliably

This may be another manifestation of the previous problem. If not, and your rule uses sysfs attributes, it may be a
kernel timing issue, to be fixed in later kernels. For now, you can work around it by creating a rule that waits for the
used sysfs attribute and appending it to the /etc/udev/rules.d/10-wait_for_sysfs.rules file (create this file if it does
not exist). Please notify the LFS Development list if you do so and it helps.

9.3.3.6. Udev Does Not Create a Device

First, be certain that the driver is built into the kernel or already loaded as a module, and that udev isn't creating a
misnamed device.

If a kernel driver does not export its data to sysfs, udev lacks the information needed to create a device node. This is
most likely to happen with third party drivers from outside the kernel tree. Create a static device node in /usr/lib/
udev/devices with the appropriate major/minor numbers (see the file devices.txt inside the kernel documentation or
the documentation provided by the third party driver vendor). The static device node will be copied to /dev by udev.

9.3.3.7. Device Naming Order Changes Randomly After Rebooting

This is due to the fact that udev, by design, handles uevents and loads modules in parallel, and thus in an unpredictable
order. This will never be “fixed”. You should not rely upon the kernel device names being stable. Instead, create your
own rules that make symlinks with stable names based on some stable attributes of the device, such as a serial number
or the output of various *_id utilities installed by udev. See Section 9.4, “Managing Devices” and Section 9.2, “General
Network Configuration” for examples.

241

Linux From Scratch - Version 12.0-systemd

9.3.4. Useful Reading

Additional helpful documentation is available at the following sites:

• A Userspace Implementation of devfs http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-
Hartman-OLS2003.pdf

• The sysfs Filesystem https://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf

9.4. Managing Devices

9.4.1. Dealing with Duplicate Devices

As explained in Section 9.3, “Overview of Device and Module Handling”, the order in which devices with the same
function appear in /dev is essentially random. E.g., if you have a USB web camera and a TV tuner, sometimes /dev/
video0 refers to the camera and /dev/video1 refers to the tuner, and sometimes after a reboot the order changes. For
all classes of hardware except sound cards and network cards, this is fixable by creating udev rules to create persistent
symlinks. The case of network cards is covered separately in Section 9.2, “General Network Configuration”, and sound
card configuration can be found in BLFS.

For each of your devices that is likely to have this problem (even if the problem doesn't exist in your current Linux
distribution), find the corresponding directory under /sys/class or /sys/block. For video devices, this may be /sys/
class/video4linux/videoX. Figure out the attributes that identify the device uniquely (usually, vendor and product IDs
and/or serial numbers work):

udevadm info -a -p /sys/class/video4linux/video0

Then write rules that create the symlinks, e.g.:

cat > /etc/udev/rules.d/83-duplicate_devs.rules << "EOF"

Persistent symlinks for webcam and tuner
KERNEL=="video*", ATTRS{idProduct}=="1910", ATTRS{idVendor}=="0d81", SYMLINK+="webcam"
KERNEL=="video*", ATTRS{device}=="0x036f", ATTRS{vendor}=="0x109e", SYMLINK+="tvtuner"

EOF

The result is that /dev/video0 and /dev/video1 devices still refer randomly to the tuner and the web camera (and thus
should never be used directly), but there are symlinks /dev/tvtuner and /dev/webcam that always point to the correct
device.

9.5. Configuring the system clock
This section discusses how to configure the systemd-timedated system service, which configures the system clock
and timezone.

If you cannot remember whether or not the hardware clock is set to UTC, find out by running the hwclock --localtime
--show command. This will display what the current time is according to the hardware clock. If this time matches
whatever your watch says, then the hardware clock is set to local time. If the output from hwclock is not local time,
chances are it is set to UTC time. Verify this by adding or subtracting the proper amount of hours for the timezone
to the time shown by hwclock. For example, if you are currently in the MST timezone, which is also known as GMT
-0700, add seven hours to the local time.

242

http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
https://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/devices.html

Linux From Scratch - Version 12.0-systemd

systemd-timedated reads /etc/adjtime, and depending on the contents of the file, sets the clock to either UTC or
local time.

Create the /etc/adjtime file with the following contents if your hardware clock is set to local time:

cat > /etc/adjtime << "EOF"
0.0 0 0.0
0
LOCAL
EOF

If /etc/adjtime isn't present at first boot, systemd-timedated will assume that hardware clock is set to UTC and adjust
the file according to that.

You can also use the timedatectl utility to tell systemd-timedated if your hardware clock is set to UTC or local time:

timedatectl set-local-rtc 1

timedatectl can also be used to change system time and time zone.

To change your current system time, issue:

timedatectl set-time YYYY-MM-DD HH:MM:SS

The hardware clock will also be updated accordingly.

To change your current time zone, issue:

timedatectl set-timezone TIMEZONE

You can get a list of available time zones by running:

timedatectl list-timezones

Note

Please note that the timedatectl command doesn't work in the chroot environment. It can only be used after
the LFS system is booted with systemd.

9.5.1. Network Time Synchronization

Starting with version 213, systemd ships a daemon called systemd-timesyncd which can be used to synchronize the
system time with remote NTP servers.

The daemon is not intended as a replacement for the well established NTP daemon, but as a client only implementation
of the SNTP protocol which can be used for less advanced tasks and on resource limited systems.

Starting with systemd version 216, the systemd-timesyncd daemon is enabled by default. If you want to disable it,
issue the following command:

systemctl disable systemd-timesyncd

The /etc/systemd/timesyncd.conf file can be used to change the NTP servers that systemd-timesyncd synchronizes
with.

Please note that when system clock is set to Local Time, systemd-timesyncd won't update hardware clock.

243

Linux From Scratch - Version 12.0-systemd

9.6. Configuring the Linux Console
This section discusses how to configure the systemd-vconsole-setup system service, which configures the virtual
console font and console keymap.

The systemd-vconsole-setup service reads the /etc/vconsole.conf file for configuration information. Decide which
keymap and screen font will be used. Various language-specific HOWTOs can also help with this, see https://tldp.org/
HOWTO/HOWTO-INDEX/other-lang.html. Examine the output of localectl list-keymaps for a list of valid console
keymaps. Look in the /usr/share/consolefonts directory for valid screen fonts.

The /etc/vconsole.conf file should contain lines of the form: VARIABLE="value". The following variables are
recognized:

KEYMAP
This variable specifies the key mapping table for the keyboard. If unset, it defaults to us.

KEYMAP_TOGGLE
This variable can be used to configure a second toggle keymap and is unset by default.

FONT
This variable specifies the font used by the virtual console.

FONT_MAP
This variable specifies the console map to be used.

FONT_UNIMAP
This variable specifies the Unicode font map.

An example for a German keyboard and console is given below:

cat > /etc/vconsole.conf << "EOF"
KEYMAP=de-latin1
FONT=Lat2-Terminus16
EOF

You can change KEYMAP value at runtime by using the localectl utility:

localectl set-keymap MAP

Note

Please note that the localectl command doesn't work in the chroot environment. It can only be used after the
LFS system is booted with systemd.

You can also use localectl utility with the corresponding parameters to change X11 keyboard layout, model, variant
and options:

localectl set-x11-keymap LAYOUT [MODEL] [VARIANT] [OPTIONS]

To list possible values for localectl set-x11-keymap parameters, run localectl with parameters listed below:

list-x11-keymap-models
Shows known X11 keyboard mapping models.

list-x11-keymap-layouts
Shows known X11 keyboard mapping layouts.

list-x11-keymap-variants
Shows known X11 keyboard mapping variants.

244

https://tldp.org/HOWTO/HOWTO-INDEX/other-lang.html
https://tldp.org/HOWTO/HOWTO-INDEX/other-lang.html

Linux From Scratch - Version 12.0-systemd

list-x11-keymap-options
Shows known X11 keyboard mapping options.

Note

Using any of the parameters listed above requires the XKeyboard-Config package from BLFS.

9.7. Configuring the System Locale
The /etc/locale.conf file below sets some environment variables necessary for native language support. Setting them
properly results in:

• The output of programs being translated into your native language

• The correct classification of characters into letters, digits and other classes. This is necessary for bash to properly
accept non-ASCII characters in command lines in non-English locales

• The correct alphabetical sorting order for the country

• The appropriate default paper size

• The correct formatting of monetary, time, and date values

Replace <ll> below with the two-letter code for your desired language (e.g., “en”) and <CC> with the two-letter code for
the appropriate country (e.g., “GB”). <charmap> should be replaced with the canonical charmap for your chosen locale.
Optional modifiers such as “@euro” may also be present.

The list of all locales supported by Glibc can be obtained by running the following command:

locale -a

Charmaps can have a number of aliases, e.g., “ISO-8859-1” is also referred to as “iso8859-1” and “iso88591”. Some
applications cannot handle the various synonyms correctly (e.g., require that “UTF-8” is written as “UTF-8”, not
“utf8”), so it is the safest in most cases to choose the canonical name for a particular locale. To determine the canonical
name, run the following command, where <locale name> is the output given by locale -a for your preferred locale
(“en_GB.iso88591” in our example).

LC_ALL=<locale name> locale charmap

For the “en_GB.iso88591” locale, the above command will print:

ISO-8859-1

This results in a final locale setting of “en_GB.ISO-8859-1”. It is important that the locale found using the heuristic
above is tested prior to it being added to the Bash startup files:

LC_ALL=<locale name> locale language
LC_ALL=<locale name> locale charmap
LC_ALL=<locale name> locale int_curr_symbol
LC_ALL=<locale name> locale int_prefix

The above commands should print the language name, the character encoding used by the locale, the local currency,
and the prefix to dial before the telephone number in order to get into the country. If any of the commands above fail
with a message similar to the one shown below, this means that your locale was either not installed in Chapter 8 or is
not supported by the default installation of Glibc.

locale: Cannot set LC_* to default locale: No such file or directory

245

Linux From Scratch - Version 12.0-systemd

If this happens, you should either install the desired locale using the localedef command, or consider choosing a different
locale. Further instructions assume that there are no such error messages from Glibc.

Some packages beyond LFS may also lack support for your chosen locale. One example is the X library (part of the X
Window System), which outputs the following error message if the locale does not exactly match one of the character
map names in its internal files:

Warning: locale not supported by Xlib, locale set to C

In several cases Xlib expects that the character map will be listed in uppercase notation with canonical dashes. For
instance, "ISO-8859-1" rather than "iso88591". It is also possible to find an appropriate specification by removing the
charmap part of the locale specification. This can be checked by running the locale charmap command in both locales.
For example, one would have to change "de_DE.ISO-8859-15@euro" to "de_DE@euro" in order to get this locale
recognized by Xlib.

Other packages can also function incorrectly (but may not necessarily display any error messages) if the locale name
does not meet their expectations. In those cases, investigating how other Linux distributions support your locale might
provide some useful information.

Once the proper locale settings have been determined, create the /etc/locale.conf file:

cat > /etc/locale.conf << "EOF"
LANG=<ll>_<CC>.<charmap><@modifiers>
EOF

Note that you can modify /etc/locale.conf with the systemd localectl utility. To use localectl for the example above,
run:

localectl set-locale LANG="<ll>_<CC>.<charmap><@modifiers>"

You can also specify other language specific environment variables such as LANG, LC_CTYPE, LC_NUMERIC or any other
environment variable from locale output. Just separate them with a space. An example where LANG is set as en_US.UTF-8
but LC_CTYPE is set as just en_US is:

localectl set-locale LANG="en_US.UTF-8" LC_CTYPE="en_US"

Note

Please note that the localectl command doesn't work in the chroot environment. It can only be used after the
LFS system is booted with systemd.

The “C” (default) and “en_US” (the recommended one for United States English users) locales are different. “C” uses
the US-ASCII 7-bit character set, and treats bytes with the high bit set as invalid characters. That's why, e.g., the
ls command substitutes them with question marks in that locale. Also, an attempt to send mail with such characters
from Mutt or Pine results in non-RFC-conforming messages being sent (the charset in the outgoing mail is indicated
as “unknown 8-bit”). It's suggested that you use the “C” locale only if you are certain that you will never need 8-bit
characters.

9.8. Creating the /etc/inputrc File
The inputrc file is the configuration file for the readline library, which provides editing capabilities while the user is
entering a line from the terminal. It works by translating keyboard inputs into specific actions. Readline is used by bash
and most other shells as well as many other applications.

246

Linux From Scratch - Version 12.0-systemd

Most people do not need user-specific functionality so the command below creates a global /etc/inputrc used by
everyone who logs in. If you later decide you need to override the defaults on a per user basis, you can create a .inputrc
file in the user's home directory with the modified mappings.

For more information on how to edit the inputrc file, see info bash under the Readline Init File section. info readline
is also a good source of information.

Below is a generic global inputrc along with comments to explain what the various options do. Note that comments
cannot be on the same line as commands. Create the file using the following command:

cat > /etc/inputrc << "EOF"
Begin /etc/inputrc
Modified by Chris Lynn <roryo@roryo.dynup.net>

Allow the command prompt to wrap to the next line
set horizontal-scroll-mode Off

Enable 8-bit input
set meta-flag On
set input-meta On

Turns off 8th bit stripping
set convert-meta Off

Keep the 8th bit for display
set output-meta On

none, visible or audible
set bell-style none

All of the following map the escape sequence of the value
contained in the 1st argument to the readline specific functions
"\eOd": backward-word
"\eOc": forward-word

for linux console
"\e[1~": beginning-of-line
"\e[4~": end-of-line
"\e[5~": beginning-of-history
"\e[6~": end-of-history
"\e[3~": delete-char
"\e[2~": quoted-insert

for xterm
"\eOH": beginning-of-line
"\eOF": end-of-line

for Konsole
"\e[H": beginning-of-line
"\e[F": end-of-line

End /etc/inputrc
EOF

9.9. Creating the /etc/shells File
The shells file contains a list of login shells on the system. Applications use this file to determine whether a shell is
valid. For each shell a single line should be present, consisting of the shell's path relative to the root of the directory
structure (/).

247

Linux From Scratch - Version 12.0-systemd

For example, this file is consulted by chsh to determine whether an unprivileged user may change the login shell for
her own account. If the command name is not listed, the user will be denied the ability to change shells.

It is a requirement for applications such as GDM which does not populate the face browser if it can't find /etc/shells,
or FTP daemons which traditionally disallow access to users with shells not included in this file.

cat > /etc/shells << "EOF"
Begin /etc/shells

/bin/sh
/bin/bash

End /etc/shells
EOF

9.10. Systemd Usage and Configuration

9.10.1. Basic Configuration
The /etc/systemd/system.conf file contains a set of options to control basic systemd operations. The default file has
all entries commented out with the default settings indicated. This file is where the log level may be changed as well
as some basic logging settings. See the systemd-system.conf(5) manual page for details on each configuration option.

9.10.2. Disabling Screen Clearing at Boot Time
The normal behavior for systemd is to clear the screen at the end of the boot sequence. If desired, this behavior may
be changed by running the following command:

mkdir -pv /etc/systemd/system/getty@tty1.service.d

cat > /etc/systemd/system/getty@tty1.service.d/noclear.conf << EOF
[Service]
TTYVTDisallocate=no
EOF

The boot messages can always be reviewed by using the journalctl -b command as the root user.

9.10.3. Disabling tmpfs for /tmp
By default, /tmp is created as a tmpfs. If this is not desired, it can be overridden by executing the following command:

ln -sfv /dev/null /etc/systemd/system/tmp.mount

Alternatively, if a separate partition for /tmp is desired, specify that partition in a /etc/fstab entry.

Warning

Do not create the symbolic link above if a separate partition is used for /tmp. This will prevent the root file
system (/) from being remounted r/w and make the system unusable when booted.

9.10.4. Configuring Automatic File Creation and Deletion
There are several services that create or delete files or directories:

• systemd-tmpfiles-clean.service

248

Linux From Scratch - Version 12.0-systemd

• systemd-tmpfiles-setup-dev.service

• systemd-tmpfiles-setup.service

The system location for the configuration files is /usr/lib/tmpfiles.d/*.conf. The local configuration files are in /
etc/tmpfiles.d. Files in /etc/tmpfiles.d override files with the same name in /usr/lib/tmpfiles.d. See tmpfiles.
d(5) manual page for file format details.

Note that the syntax for the /usr/lib/tmpfiles.d/*.conf files can be confusing. For example, the default deletion of
files in the /tmp directory is located in /usr/lib/tmpfiles.d/tmp.conf with the line:

q /tmp 1777 root root 10d

The type field, q, discusses creating a subvolume with quotas which is really only applicable to btrfs filesystems. It
references type v which in turn references type d (directory). This then creates the specified directory if it is not present
and adjusts the permissions and ownership as specified. Contents of the directory will be subject to time based cleanup
if the age argument is specified.

If the default parameters are not desired, then the file should be copied to /etc/tmpfiles.d and edited as desired. For
example:

mkdir -p /etc/tmpfiles.d
cp /usr/lib/tmpfiles.d/tmp.conf /etc/tmpfiles.d

9.10.5. Overriding Default Services Behavior

The parameters of a unit can be overridden by creating a directory and a configuration file in /etc/systemd/system.
For example:

mkdir -pv /etc/systemd/system/foobar.service.d

cat > /etc/systemd/system/foobar.service.d/foobar.conf << EOF
[Service]
Restart=always
RestartSec=30
EOF

See systemd.unit(5) manual page for more information. After creating the configuration file, run systemctl daemon-
reload and systemctl restart foobar to activate the changes to a service.

9.10.6. Debugging the Boot Sequence

Rather than plain shell scripts used in SysVinit or BSD style init systems, systemd uses a unified format for different
types of startup files (or units). The command systemctl is used to enable, disable, control state, and obtain status of
unit files. Here are some examples of frequently used commands:

• systemctl list-units -t <service> [--all]: lists loaded unit files of type service.

• systemctl list-units -t <target> [--all]: lists loaded unit files of type target.

• systemctl show -p Wants <multi-user.target>: shows all units that depend on the multi-user target. Targets are
special unit files that are analogous to runlevels under SysVinit.

• systemctl status <servicename.service>: shows the status of the servicename service. The .service extension can
be omitted if there are no other unit files with the same name, such as .socket files (which create a listening socket
that provides similar functionality to inetd/xinetd).

249

Linux From Scratch - Version 12.0-systemd

9.10.7. Working with the Systemd Journal
Logging on a system booted with systemd is handled with systemd-journald (by default), rather than a typical unix
syslog daemon. You can also add a normal syslog daemon and have both operate side by side if desired. The systemd-
journald program stores journal entries in a binary format rather than a plain text log file. To assist with parsing the file,
the command journalctl is provided. Here are some examples of frequently used commands:

• journalctl -r: shows all contents of the journal in reverse chronological order.

• journalctl -u UNIT: shows the journal entries associated with the specified UNIT file.

• journalctl -b[=ID] -r: shows the journal entries since last successful boot (or for boot ID) in reverse chronological
order.

• journalctl -f: provides functionality similar to tail -f (follow).

9.10.8. Working with Core Dumps
Core dumps are useful to debug crashed programs, especially when a daemon process crashes. On systemd booted
systems the core dumping is handled by systemd-coredump. It will log the core dump in the journal and store the
core dump itself in /var/lib/systemd/coredump. To retrieve and process core dumps, the coredumpctl tool is provided.
Here are some examples of frequently used commands:

• coredumpctl -r: lists all core dumps in reverse chronological order.

• coredumpctl -1 info: shows the information from the last core dump.

• coredumpctl -1 debug: loads the last core dump into GDB.

Core dumps may use a lot of disk space. The maximum disk space used by core dumps can be limited by creating a
configuration file in /etc/systemd/coredump.conf.d. For example:

mkdir -pv /etc/systemd/coredump.conf.d

cat > /etc/systemd/coredump.conf.d/maxuse.conf << EOF
[Coredump]
MaxUse=5G
EOF

See the systemd-coredump(8), coredumpctl(1), and coredump.conf.d(5) manual pages for more information.

9.10.9. Long Running Processes
Beginning with systemd-230, all user processes are killed when a user session is ended, even if nohup is used, or the
process uses the daemon() or setsid() functions. This is a deliberate change from a historically permissive environment
to a more restrictive one. The new behavior may cause issues if you depend on long running programs (e.g., screen
or tmux) to remain active after ending your user session. There are three ways to enable lingering processes to remain
after a user session is ended.

• Enable process lingering for only selected users: Normal users have permission to enable process lingering with
the command loginctl enable-linger for their own user. System administrators can use the same command with
a user argument to enable for a user. That user can then use the systemd-run command to start long running
processes. For example: systemd-run --scope --user /usr/bin/screen. If you enable lingering for your user, the
user@.service will remain even after all login sessions are closed, and will automatically start at system boot. This
has the advantage of explicitly allowing and disallowing processes to run after the user session has ended, but
breaks backwards compatibility with tools like nohup and utilities that use daemon().

250

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/gdb.html

Linux From Scratch - Version 12.0-systemd

• Enable system-wide process lingering: You can set KillUserProcesses=no in /etc/systemd/logind.conf to enable
process lingering globally for all users. This has the benefit of leaving the old method available to all users at the
expense of explicit control.

• Disable at build-time: You can disable lingering by default while building systemd by adding the switch -
Ddefault-kill-user-processes=false to the meson command for systemd. This completely disables the ability of
systemd to kill user processes at session end.

251

Linux From Scratch - Version 12.0-systemd

Chapter 10. Making the LFS System Bootable

10.1. Introduction
It is time to make the LFS system bootable. This chapter discusses creating the /etc/fstab file, building a kernel for
the new LFS system, and installing the GRUB boot loader so that the LFS system can be selected for booting at startup.

10.2. Creating the /etc/fstab File
The /etc/fstab file is used by some programs to determine where file systems are to be mounted by default, in which
order, and which must be checked (for integrity errors) prior to mounting. Create a new file systems table like this:

cat > /etc/fstab << "EOF"
Begin /etc/fstab

file system mount-point type options dump fsck
order

/dev/<xxx> / <fff> defaults 1 1
/dev/<yyy> swap swap pri=1 0 0

End /etc/fstab
EOF

Replace <xxx>, <yyy>, and <fff> with the values appropriate for the system, for example, sda2, sda5, and ext4. For
details on the six fields in this file, see man 5 fstab.

Filesystems with MS-DOS or Windows origin (i.e. vfat, ntfs, smbfs, cifs, iso9660, udf) need a special option, utf8, in
order for non-ASCII characters in file names to be interpreted properly. For non-UTF-8 locales, the value of iocharset
should be set to be the same as the character set of the locale, adjusted in such a way that the kernel understands it. This
works if the relevant character set definition (found under File systems -> Native Language Support when configuring
the kernel) has been compiled into the kernel or built as a module. However, if the character set of the locale is UTF-8,
the corresponding option iocharset=utf8 would make the file system case sensitive. To fix this, use the special option
utf8 instead of iocharset=utf8, for UTF-8 locales. The “codepage” option is also needed for vfat and smbfs filesystems.
It should be set to the codepage number used under MS-DOS in your country. For example, in order to mount USB
flash drives, a ru_RU.KOI8-R user would need the following in the options portion of its mount line in /etc/fstab:

noauto,user,quiet,showexec,codepage=866,iocharset=koi8r

The corresponding options fragment for ru_RU.UTF-8 users is:

noauto,user,quiet,showexec,codepage=866,utf8

Note that using iocharset is the default for iso8859-1 (which keeps the file system case insensitive), and the utf8 option
tells the kernel to convert the file names using UTF-8 so they can be interpreted in the UTF-8 locale.

It is also possible to specify default codepage and iocharset values for some filesystems during kernel configuration.
The relevant parameters are named “Default NLS Option” (CONFIG_NLS_DEFAULT), “Default Remote NLS Option”
(CONFIG_SMB_NLS_DEFAULT), “Default codepage for FAT” (CONFIG_FAT_DEFAULT_CODEPAGE), and “Default iocharset for
FAT” (CONFIG_FAT_DEFAULT_IOCHARSET). There is no way to specify these settings for the ntfs filesystem at kernel
compilation time.

252

Linux From Scratch - Version 12.0-systemd

It is possible to make the ext3 filesystem reliable across power failures for some hard disk types. To do this, add the
barrier=1 mount option to the appropriate entry in /etc/fstab. To check if the disk drive supports this option, run
hdparm on the applicable disk drive. For example, if:

hdparm -I /dev/sda | grep NCQ

returns non-empty output, the option is supported.

Note: Logical Volume Management (LVM) based partitions cannot use the barrier option.

253

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/hdparm.html

Linux From Scratch - Version 12.0-systemd

10.3. Linux-6.4.12
The Linux package contains the Linux kernel.

Approximate build time: 1.5 - 130.0 SBU (typically about 12 SBU)
Required disk space: 1200 - 8800 MB (typically about 1700 MB)

10.3.1. Installation of the kernel
Building the kernel involves a few steps—configuration, compilation, and installation. Read the README file in the kernel
source tree for alternative methods to the way this book configures the kernel.

Important

Building the linux kernel for the first time is one of the most challenging tasks in LFS. Getting it right depends
on the specific hardware for the target system and your specific needs. There are almost 12,000 configuration
items that are available for the kernel although only about a third of them are needed for most computers. The
LFS editors recommend that users not familiar with this process follow the procedures below fairly closely.
The objective is to get an initial system to a point where you can log in at the command line when you reboot
later in Section 11.3, “Rebooting the System”. At this point optimization and customization is not a goal.

For general information on kernel configuration see https://www.linuxfromscratch.org/hints/downloads/files/
kernel-configuration.txt. Additional information about configuring and building the kernel can be found at
https://anduin.linuxfromscratch.org/LFS/kernel-nutshell/. These references are a bit dated, but still give a
reasonable overview of the process.

If all else fails, you can ask for help on the lfs-support mailing list. Note that subscribing is required in order
for the list to avoid spam.

Prepare for compilation by running the following command:

make mrproper

This ensures that the kernel tree is absolutely clean. The kernel team recommends that this command be issued prior to
each kernel compilation. Do not rely on the source tree being clean after un-tarring.

There are several ways to configure the kernel options. Usually, This is done through a menu-driven interface, for
example:

make menuconfig

The meaning of optional make environment variables:

LANG=<host_LANG_value> LC_ALL=

This establishes the locale setting to the one used on the host. This may be needed for a proper menuconfig ncurses
interface line drawing on a UTF-8 linux text console.
If used, be sure to replace <host_LANG_value> by the value of the $LANG variable from your host. You can
alternatively use instead the host's value of $LC_ALL or $LC_CTYPE.

make menuconfig
This launches an ncurses menu-driven interface. For other (graphical) interfaces, type make help.

Note

A good starting place for setting up the kernel configuration is to run make defconfig. This will set the base
configuration to a good state that takes your current system architecture into account.

254

https://www.linuxfromscratch.org/hints/downloads/files/kernel-configuration.txt
https://www.linuxfromscratch.org/hints/downloads/files/kernel-configuration.txt
https://anduin.linuxfromscratch.org/LFS/kernel-nutshell/
https://www.linuxfromscratch.org/mail.html

Linux From Scratch - Version 12.0-systemd

Be sure to enable/disable/set the following features or the system might not work correctly or boot at all:

General setup --->
 [] Compile the kernel with warnings as errors [WERROR]
 [] Auditing support [AUDIT]
 CPU/Task time and stats accounting --->
 [*] Pressure stall information tracking [PSI]
 [] Require boot parameter to enable pressure stall information tracking
 ... [PSI_DEFAULT_DISABLED]
 < > Enable kernel headers through /sys/kernel/kheaders.tar.xz [IKHEADERS]
 [*] Control Group support ---> [CGROUPS]
 [*] Memory controller [MEMCG]
 [] Configure standard kernel features (expert users) ---> [EXPERT]

Processor type and features --->
 [*] Build a relocatable kernel [RELOCATABLE]
 [*] Randomize the address of the kernel image (KASLR) [RANDOMIZE_BASE]

General architecture-dependent options --->
 [*] Stack Protector buffer overflow detection [STACKPROTECTOR]
 [*] Strong Stack Protector [STACKPROTECTOR_STRONG]

[*] Networking support ---> [NET]
 Networking options --->
 [*] TCP/IP networking [INET]
 <*> The IPv6 protocol ---> [IPV6]

Device Drivers --->
 Generic Driver Options --->
 [] Support for uevent helper [UEVENT_HELPER]
 [*] Maintain a devtmpfs filesystem to mount at /dev [DEVTMPFS]
 [*] Automount devtmpfs at /dev, after the kernel mounted the rootfs
 ... [DEVTMPFS_MOUNT]
 Firmware loader --->
 < /*> Firmware loading facility [FW_LOADER]
 [] Enable the firmware sysfs fallback mechanism
 ... [FW_LOADER_USER_HELPER]
 Firmware Drivers --->
 [*] Export DMI identification via sysfs to userspace [DMIID]
 Graphics support --->
 Frame buffer Devices --->
 <*> Support for frame buffer devices ---> [FB]
 Console display driver support --->
 [*] Framebuffer Console support [FRAMEBUFFER_CONSOLE]

File systems --->
 [*] Inotify support for userspace [INOTIFY_USER]
 Pseudo filesystems --->
 [*] Tmpfs virtual memory file system support (former shm fs) [TMPFS]
 [*] Tmpfs POSIX Access Control Lists [TMPFS_POSIX_ACL]

255

Linux From Scratch - Version 12.0-systemd

Enable some additional features if you are building a 64-bit system. If you are using menuconfig, enable them
in the order of CONFIG_PCI_MSI first, then CONFIG_IRQ_REMAP, at last CONFIG_X86_X2APIC because an option only
shows up after its dependencies are selected.

Processor type and features --->
 [*] Support x2apic [X86_X2APIC]

Device Drivers --->
 [*] PCI support ---> [PCI]
 [*] Message Signaled Interrupts (MSI and MSI-X) [PCI_MSI]
 [*] IOMMU Hardware Support ---> [IOMMU_SUPPORT]
 [*] Support for Interrupt Remapping [IRQ_REMAP]

If you are building a 32-bit system running on a hardware with RAM more than 4GB, adjust the configuration
so the kernel will be able to use up to 64GB physical RAM:

Processor type and features --->
 High Memory Support --->
 (X) 64GB [HIGHMEM64G]

If the partition for the LFS system is in a NVME SSD (i. e. the device node for the partition is /dev/nvme*
instead of /dev/sd*), enable NVME support or the LFS system won't boot:

Device Drivers --->
 NVME Support --->
 <*> NVM Express block device [BLK_DEV_NVME]

Note

While "The IPv6 Protocol" is not strictly required, it is highly recommended by the systemd developers.

There are several other options that may be desired depending on the requirements for the system. For a list of options
needed for BLFS packages, see the BLFS Index of Kernel Settings.

Note

If your host hardware is using UEFI and you wish to boot the LFS system with it, you should adjust some
kernel configuration following the BLFS page even if you'll use the UEFI bootloader from the host distro.

The rationale for the above configuration items:

Randomize the address of the kernel image (KASLR)

Enable ASLR for kernel image, to mitigate some attacks based on fixed addresses of sensitive data or code in
the kernel.

Compile the kernel with warnings as errors

This may cause building failure if the compiler and/or configuration are different from those of the kernel
developers.

Enable kernel headers through /sys/kernel/kheaders.tar.xz

This will require cpio building the kernel. cpio is not installed by LFS.

Configure standard kernel features (expert users)

This will make some options show up in the configuration interface but changing those options may be dangerous.
Do not use this unless you know what you are doing.

256

https://www.linuxfromscratch.org/blfs/view/stable-systemd/longindex.html#kernel-config-index
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/grub-setup.html#uefi-kernel

Linux From Scratch - Version 12.0-systemd

Strong Stack Protector

Enable SSP for the kernel. We've enabled it for the entire userspace with --enable-default-ssp configuring GCC,
but the kernel does not use GCC default setting for SSP. We enable it explicitly here.

Support for uevent helper

Having this option set may interfere with device management when using Udev.

Maintain a devtmpfs

This will create automated device nodes which are populated by the kernel, even without Udev running. Udev
then runs on top of this, managing permissions and adding symlinks. This configuration item is required for all
users of Udev.

Automount devtmpfs at /dev

This will mount the kernel view of the devices on /dev upon switching to root filesystem just before starting init.

Framebuffer Console support

This is needed to display the Linux console on a frame buffer device. To allow the kernel to print debug messages
at an early boot stage, it shouldn't be built as a kernel module unless an initramfs will be used. And, if CONFIG_
DRM (Direct Rendering Manager) is enabled, it's likely CONFIG_DRM_FBDEV_EMULATION (Enable legacy fbdev support
for your modesetting driver) should be enabled as well.

Support x2apic

Support running the interrupt controller of 64-bit x86 processors in x2APIC mode. x2APIC may be enabled by
firmware on 64-bit x86 systems, and a kernel without this option enabled will panic on boot if x2APIC is enabled
by firmware. This option has has no effect, but also does no harm if x2APIC is disabled by the firmware.

Alternatively, make oldconfig may be more appropriate in some situations. See the README file for more information.

If desired, skip kernel configuration by copying the kernel config file, .config, from the host system (assuming it is
available) to the unpacked linux-6.4.12 directory. However, we do not recommend this option. It is often better to
explore all the configuration menus and create the kernel configuration from scratch.

Compile the kernel image and modules:

make

If using kernel modules, module configuration in /etc/modprobe.d may be required. Information pertaining to modules
and kernel configuration is located in Section 9.3, “Overview of Device and Module Handling” and in the kernel
documentation in the linux-6.4.12/Documentation directory. Also, modprobe.d(5) may be of interest.

Unless module support has been disabled in the kernel configuration, install the modules with:

make modules_install

After kernel compilation is complete, additional steps are required to complete the installation. Some files need to be
copied to the /boot directory.

Caution

If you've decided to use a separate /boot partition for the LFS system (maybe sharing a /boot partition with
the host distro) , the files copied below should go there. The easiest way to do that is to create the entry for /
boot in /etc/fstab first (read the previous section for details), then issue the following command as the root
user in the chroot environment:

mount /boot

The path to the device node is omitted in the command because mount can read it from /etc/fstab.

257

Linux From Scratch - Version 12.0-systemd

The path to the kernel image may vary depending on the platform being used. The filename below can be changed to
suit your taste, but the stem of the filename should be vmlinuz to be compatible with the automatic setup of the boot
process described in the next section. The following command assumes an x86 architecture:

cp -iv arch/x86/boot/bzImage /boot/vmlinuz-6.4.12-lfs-12.0-systemd

System.map is a symbol file for the kernel. It maps the function entry points of every function in the kernel API, as well
as the addresses of the kernel data structures for the running kernel. It is used as a resource when investigating kernel
problems. Issue the following command to install the map file:

cp -iv System.map /boot/System.map-6.4.12

The kernel configuration file .config produced by the make menuconfig step above contains all the configuration
selections for the kernel that was just compiled. It is a good idea to keep this file for future reference:

cp -iv .config /boot/config-6.4.12

Install the documentation for the Linux kernel:

cp -r Documentation -T /usr/share/doc/linux-6.4.12

It is important to note that the files in the kernel source directory are not owned by root. Whenever a package is unpacked
as user root (like we did inside chroot), the files have the user and group IDs of whatever they were on the packager's
computer. This is usually not a problem for any other package to be installed because the source tree is removed after
the installation. However, the Linux source tree is often retained for a long time. Because of this, there is a chance
that whatever user ID the packager used will be assigned to somebody on the machine. That person would then have
write access to the kernel source.

Note

In many cases, the configuration of the kernel will need to be updated for packages that will be installed later
in BLFS. Unlike other packages, it is not necessary to remove the kernel source tree after the newly built
kernel is installed.

If the kernel source tree is going to be retained, run chown -R 0:0 on the linux-6.4.12 directory to ensure
all files are owned by user root.

Warning

Some kernel documentation recommends creating a symlink from /usr/src/linux pointing to the kernel
source directory. This is specific to kernels prior to the 2.6 series and must not be created on an LFS system
as it can cause problems for packages you may wish to build once your base LFS system is complete.

Warning

The headers in the system's include directory (/usr/include) should always be the ones against which Glibc
was compiled, that is, the sanitised headers installed in Section 5.4, “Linux-6.4.12 API Headers”. Therefore,
they should never be replaced by either the raw kernel headers or any other kernel sanitized headers.

258

Linux From Scratch - Version 12.0-systemd

10.3.2. Configuring Linux Module Load Order
Most of the time Linux modules are loaded automatically, but sometimes it needs some specific direction. The program
that loads modules, modprobe or insmod, uses /etc/modprobe.d/usb.conf for this purpose. This file needs to be created
so that if the USB drivers (ehci_hcd, ohci_hcd and uhci_hcd) have been built as modules, they will be loaded in the
correct order; ehci_hcd needs to be loaded prior to ohci_hcd and uhci_hcd in order to avoid a warning being output
at boot time.

Create a new file /etc/modprobe.d/usb.conf by running the following:

install -v -m755 -d /etc/modprobe.d
cat > /etc/modprobe.d/usb.conf << "EOF"
Begin /etc/modprobe.d/usb.conf

install ohci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i ohci_hcd ; true
install uhci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i uhci_hcd ; true

End /etc/modprobe.d/usb.conf
EOF

10.3.3. Contents of Linux
Installed files: config-6.4.12, vmlinuz-6.4.12-lfs-12.0-systemd, and System.map-6.4.12
Installed directories: /lib/modules, /usr/share/doc/linux-6.4.12

Short Descriptions

config-6.4.12 Contains all the configuration selections for the kernel

vmlinuz-6.4.12-lfs-12.0-systemd The engine of the Linux system. When turning on the computer, the
kernel is the first part of the operating system that gets loaded. It
detects and initializes all components of the computer's hardware, then
makes these components available as a tree of files to the software and
turns a single CPU into a multitasking machine capable of running
scores of programs seemingly at the same time

System.map-6.4.12 A list of addresses and symbols; it maps the entry points and addresses
of all the functions and data structures in the kernel

259

Linux From Scratch - Version 12.0-systemd

10.4. Using GRUB to Set Up the Boot Process

Note

If your system has UEFI support and you wish to boot LFS with UEFI, you should skip the instructions in
this page but still learn the syntax of grub.cfg and the method to specify a partition in the file from this page,
and configure GRUB with UEFI support using the instructions provided in the BLFS page.

10.4.1. Introduction

Warning

Configuring GRUB incorrectly can render your system inoperable without an alternate boot device such as a
CD-ROM or bootable USB drive. This section is not required to boot your LFS system. You may just want
to modify your current boot loader, e.g. Grub-Legacy, GRUB2, or LILO.

Ensure that an emergency boot disk is ready to “rescue” the computer if the computer becomes unusable (un-bootable).
If you do not already have a boot device, you can create one. In order for the procedure below to work, you need to
jump ahead to BLFS and install xorriso from the libisoburn package.

cd /tmp
grub-mkrescue --output=grub-img.iso
xorriso -as cdrecord -v dev=/dev/cdrw blank=as_needed grub-img.iso

10.4.2. GRUB Naming Conventions
GRUB uses its own naming structure for drives and partitions in the form of (hdn,m), where n is the hard drive number
and m is the partition number. The hard drive numbers start from zero, but the partition numbers start from one for
normal partitions (from five for extended partitions). Note that this is different from earlier versions where both numbers
started from zero. For example, partition sda1 is (hd0,1) to GRUB and sdb3 is (hd1,3). In contrast to Linux, GRUB
does not consider CD-ROM drives to be hard drives. For example, if using a CD on hdb and a second hard drive on
hdc, that second hard drive would still be (hd1).

10.4.3. Setting Up the Configuration
GRUB works by writing data to the first physical track of the hard disk. This area is not part of any file system. The
programs there access GRUB modules in the boot partition. The default location is /boot/grub/.

The location of the boot partition is a choice of the user that affects the configuration. One recommendation is to have
a separate small (suggested size is 200 MB) partition just for boot information. That way each build, whether LFS or
some commercial distro, can access the same boot files and access can be made from any booted system. If you choose
to do this, you will need to mount the separate partition, move all files in the current /boot directory (e.g. the Linux
kernel you just built in the previous section) to the new partition. You will then need to unmount the partition and
remount it as /boot. If you do this, be sure to update /etc/fstab.

Leaving /boot on the current LFS partition will also work, but configuration for multiple systems is more difficult.

Using the above information, determine the appropriate designator for the root partition (or boot partition, if a separate
one is used). For the following example, it is assumed that the root (or separate boot) partition is sda2.

Install the GRUB files into /boot/grub and set up the boot track:

260

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/grub-setup.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/multimedia/libisoburn.html

Linux From Scratch - Version 12.0-systemd

Warning

The following command will overwrite the current boot loader. Do not run the command if this is not desired,
for example, if using a third party boot manager to manage the Master Boot Record (MBR).

grub-install /dev/sda

Note

If the system has been booted using UEFI, grub-install will try to install files for the x86_64-efi target, but
those files have not been installed in Chapter 8. If this is the case, add --target i386-pc to the command
above.

10.4.4. Creating the GRUB Configuration File

Generate /boot/grub/grub.cfg:

cat > /boot/grub/grub.cfg << "EOF"
Begin /boot/grub/grub.cfg
set default=0
set timeout=5

insmod part_gpt
insmod ext2
set root=(hd0,2)

menuentry "GNU/Linux, Linux 6.4.12-lfs-12.0-systemd" {
 linux /boot/vmlinuz-6.4.12-lfs-12.0-systemd root=/dev/sda2 ro
}
EOF

The insmod commands load the GRUB modules named part_gpt and ext2. Despite the naming, ext2 actually supports
ext2, ext3, and ext4 filesystems. The grub-install command has embedded some modules into the main GRUB image
(installed into the MBR or the GRUB BIOS partition) to access the other modules (in /boot/grub/i386-pc) without a
chicken-or-egg issue, so with a typical configuration these two modules are already embedded and those two insmod
commands will do nothing. But they do no harm anyway, and they may be needed with some rare configurations.

Note

From GRUB's perspective, the kernel files are relative to the partition used. If you used a separate /boot
partition, remove /boot from the above linux line. You will also need to change the set root line to point to
the boot partition.

261

Linux From Scratch - Version 12.0-systemd

Note

The GRUB designator for a partition may change if you added or removed some disks (including
removable disks like USB thumb devices). The change may cause boot failure because grub.cfg refers
to some “old” designators. If you wish to avoid such a problem, you may use the UUID of a partition
and the UUID of a filesystem instead of a GRUB designator to specify a device. Run lsblk -o
UUID,PARTUUID,PATH,MOUNTPOINT to show the UUIDs of your filesystems (in the UUID column)
and partitions (in the PARTUUID column). Then replace set root=(hdx,y) with search --set=root --fs-
uuid <UUID of the filesystem where the kernel is installed>, and replace root=/dev/sda2 with
root=PARTUUID=<UUID of the partition where LFS is built>.

Note that the UUID of a partition is completely different from the UUID of the filesystem in this
partition. Some online resources may instruct you to use root=UUID=<filesystem UUID> instead of
root=PARTUUID=<partition UUID>, but doing so will require an initramfs, which is beyond the scope of LFS.

The name of the device node for a partition in /dev may also change (this is less likely than a GRUB designator
change). You can also replace paths to device nodes like /dev/sda1 with PARTUUID=<partition UUID>, in /
etc/fstab, to avoid a potential boot failure in case the device node name has changed.

GRUB is an extremely powerful program and it provides a tremendous number of options for booting from a wide
variety of devices, operating systems, and partition types. There are also many options for customization such as
graphical splash screens, playing sounds, mouse input, etc. The details of these options are beyond the scope of this
introduction.

Caution

There is a command, grub-mkconfig, that can write a configuration file automatically. It uses a set of scripts
in /etc/grub.d/ and will destroy any customizations that you make. These scripts are designed primarily for
non-source distributions and are not recommended for LFS. If you install a commercial Linux distribution,
there is a good chance that this program will be run. Be sure to back up your grub.cfg file.

262

Linux From Scratch - Version 12.0-systemd

Chapter 11. The End

11.1. The End
Well done! The new LFS system is installed! We wish you much success with your shiny new custom-built Linux
system.

It may be a good idea to create an /etc/lfs-release file. By having this file, it is very easy for you (and for us if you
need to ask for help at some point) to find out which LFS version is installed on the system. Create this file by running:

echo 12.0-systemd > /etc/lfs-release

Two files describing the installed system may be used by packages that can be installed on the system later, either in
binary form or by building them.

The first one shows the status of your new system with respect to the Linux Standards Base (LSB). To create this
file, run:

cat > /etc/lsb-release << "EOF"
DISTRIB_ID="Linux From Scratch"
DISTRIB_RELEASE="12.0-systemd"
DISTRIB_CODENAME="<your name here>"
DISTRIB_DESCRIPTION="Linux From Scratch"
EOF

The second one contains roughly the same information, and is used by systemd and some graphical desktop
environments. To create this file, run:

cat > /etc/os-release << "EOF"
NAME="Linux From Scratch"
VERSION="12.0-systemd"
ID=lfs
PRETTY_NAME="Linux From Scratch 12.0-systemd"
VERSION_CODENAME="<your name here>"
EOF

Be sure to customize the fields 'DISTRIB_CODENAME' and 'VERSION_CODENAME' to make the system uniquely
yours.

11.2. Get Counted
Now that you have finished the book, do you want to be counted as an LFS user? Head over to https://www.
linuxfromscratch.org/cgi-bin/lfscounter.php and register as an LFS user by entering your name and the first LFS version
you have used.

Let's reboot into LFS now.

11.3. Rebooting the System
Now that all of the software has been installed, it is time to reboot your computer. However, there are still a few things
to check. Here are some suggestions:

• Install any firmware needed if the kernel driver for your hardware requires some firmware files to function
properly.

• Ensure a password is set for the root user.

263

https://www.linuxfromscratch.org/cgi-bin/lfscounter.php
https://www.linuxfromscratch.org/cgi-bin/lfscounter.php
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/firmware.html

Linux From Scratch - Version 12.0-systemd

• A review of the following configuration files is also appropriate at this point.

• /etc/bashrc

• /etc/dircolors

• /etc/fstab

• /etc/hosts

• /etc/inputrc

• /etc/profile

• /etc/resolv.conf

• /etc/vimrc

• /root/.bash_profile

• /root/.bashrc

Now that we have said that, let's move on to booting our shiny new LFS installation for the first time! First exit from
the chroot environment:

logout

Then unmount the virtual file systems:

umount -v $LFS/dev/pts
mountpoint -q $LFS/dev/shm && umount $LFS/dev/shm
umount -v $LFS/dev
umount -v $LFS/run
umount -v $LFS/proc
umount -v $LFS/sys

If multiple partitions were created, unmount the other partitions before unmounting the main one, like this:

umount -v $LFS/home
umount -v $LFS

Unmount the LFS file system itself:

umount -v $LFS

Now, reboot the system.

Assuming the GRUB boot loader was set up as outlined earlier, the menu is set to boot LFS 12.0-systemd automatically.

When the reboot is complete, the LFS system is ready for use. What you will see is a simple “login: ” prompt. At this
point, you can proceed to the BLFS Book where you can add more software to suit your needs.

If your reboot is not successful, it is time to troubleshoot. For hints on solving initial booting problems, see https://
www.linuxfromscratch.org/lfs/troubleshooting.html.

11.4. Additional Resources
Thank you for reading this LFS book. We hope that you have found this book helpful and have learned more about
the system creation process.

Now that the LFS system is installed, you may be wondering “What next?” To answer that question, we have compiled
a list of resources for you.

• Maintenance

264

https://www.linuxfromscratch.org/blfs/view/stable-systemd/
https://www.linuxfromscratch.org/lfs/troubleshooting.html
https://www.linuxfromscratch.org/lfs/troubleshooting.html

Linux From Scratch - Version 12.0-systemd

Bugs and security notices are reported regularly for all software. Since an LFS system is compiled from source,
it is up to you to keep abreast of such reports. There are several online resources that track such reports, some of
which are shown below:

• LFS Security Advisories

This is a list of security vulnerabilities discovered in the LFS book after it's published.

• Open Source Security Mailing List

This is a mailing list for discussion of security flaws, concepts, and practices in the Open Source community.

• LFS Hints

The LFS Hints are a collection of educational documents submitted by volunteers in the LFS community. The
hints are available at https://www.linuxfromscratch.org/hints/downloads/files/.

• Mailing lists

There are several LFS mailing lists you may subscribe to if you are in need of help, want to stay current with
the latest developments, want to contribute to the project, and more. See Chapter 1 - Mailing Lists for more
information.

• The Linux Documentation Project

The goal of The Linux Documentation Project (TLDP) is to collaborate on all of the issues of Linux
documentation. The TLDP features a large collection of HOWTOs, guides, and man pages. It is located at https://
tldp.org/.

11.5. Getting Started After LFS

11.5.1. Deciding what to do next
Now that LFS is complete and you have a bootable system, what do you do? The next step is to decide how to use it.
Generally, there are two broad categories to consider: workstation or server. Indeed, these categories are not mutually
exclusive. The applications needed for each category can be combined onto a single system, but let's look at them
separately for now.

A server is the simpler category. Generally this consists of a web server such as the Apache HTTP Server and a database
server such as MariaDB. However other services are possible. The operating system embedded in a single use device
falls into this category.

On the other hand, a workstation is much more complex. It generally requires a graphical user environment such as
LXDE, XFCE, KDE, or Gnome based on a basic graphical environment and several graphical based applications such
as the Firefox web browser, Thunderbird email client, or LibreOffice office suite. These applications require many
(several hundred depending on desired capabilities) more packages of support applications and libraries.

In addition to the above, there is a set of applications for system management for all kinds of systems. These applications
are all in the BLFS book. Not all packages are needed in every environments. For example dhcpcd, is not normally
appropriate for a server and wireless_tools, are normally only useful for a laptop system.

11.5.2. Working in a basic LFS environment
When you initially boot into LFS, you have all the internal tools to build additional packages. Unfortunately, the user
environment is quite sparse. There are a couple of ways to improve this:

265

https://www.linuxfromscratch.org/lfs/advisories/
https://seclists.org/oss-sec/
https://www.linuxfromscratch.org/hints/downloads/files/
https://tldp.org/
https://tldp.org/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/apache.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/mariadb.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/lxde/lxde.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/xfce/xfce.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/kde/kde.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/gnome/gnome.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/x/installing.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/xsoft/firefox.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/xsoft/thunderbird.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/xsoft/libreoffice.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/dhcpcd.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/wireless_tools.html

Linux From Scratch - Version 12.0-systemd

11.5.2.1. Work from the LFS host in chroot

This method provides a complete graphical environment where a full featured browser and copy/paste capabilities are
available. This method allows using applications like the host's version of wget to download package sources to a
location available when working in the chroot environment.

In order to properly build packages in chroot, you will also need to remember to mount the virtual file systems if they
are not already mounted. One way to do this is to create a script on the HOST system:

cat > ~/mount-virt.sh << "EOF"
#!/bin/bash

function mountbind
{
 if ! mountpoint $LFS/$1 >/dev/null; then
 $SUDO mount --bind /$1 $LFS/$1
 echo $LFS/$1 mounted
 else
 echo $LFS/$1 already mounted
 fi
}

function mounttype
{
 if ! mountpoint $LFS/$1 >/dev/null; then
 $SUDO mount -t $2 $3 $4 $5 $LFS/$1
 echo $LFS/$1 mounted
 else
 echo $LFS/$1 already mounted
 fi
}

if [$EUID -ne 0]; then
 SUDO=sudo
else
 SUDO=""
fi

if [x$LFS == x]; then
 echo "LFS not set"
 exit 1
fi

mountbind dev
mounttype dev/pts devpts devpts -o gid=5,mode=620
mounttype proc proc proc
mounttype sys sysfs sysfs
mounttype run tmpfs run
if [-h $LFS/dev/shm]; then
 mkdir -pv $LFS/$(readlink $LFS/dev/shm)
else
 mounttype dev/shm tmpfs tmpfs -o nosuid,nodev
fi

#mountbind usr/src
#mountbind boot
#mountbind home
EOF

Note that the last three commands in the script are commented out. These are useful if those directories are mounted as
separate partitions on the host system and will be mounted when booting the completed LFS/BLFS system.

266

Linux From Scratch - Version 12.0-systemd

The script can be run with bash ~/mount-virt.sh as either a regular user (recommended) or as root. If run as a regular
user, sudo is required on the host system.

Another issue pointed out by the script is where to store downloaded package files. This location is arbitrary. It can
be in a regular user's home directory such as ~/sources or in a global location like /usr/src. Our recommendation is not
to mix BLFS sources and LFS sources in (from the chroot environment) /sources. In any case, the packages must be
accessible inside the chroot environment.

A last convenience feature presented here is to streamline the process of entering the chroot environment. This can be
done with an alias placed in a user's ~/.bashrc file on the host system:

alias lfs='sudo /usr/sbin/chroot /mnt/lfs /usr/bin/env -i HOME=/root TERM="$TERM" PS1="\u:\w\\\\$ "
PATH=/bin:/usr/bin:/sbin:/usr/sbin /bin/bash --login'

This alias is a little tricky because of the quoting and levels of backslash characters. It must be all on a single line. The
above command has been split in two for presentation purposes.

11.5.2.2. Work remotely via ssh

This method also provides a full graphical environment, but first requires installing sshd and wget on the LFS system,
usually in chroot. It also requires a second computer. This method has the advantage of being simple by not requiring the
complexity of the chroot environment. It also uses your LFS built kernel for all additional packages and still provides
a complete system for installing packages.

11.5.2.3. Work from the LFS command line

This method requires installing libtasn1, p11-kit, make-ca, wget, gpm, and links (or lynx) in chroot and then rebooting
into the new LFS system. At this point the default system has six virtual consoles. Switching consoles is as easy as
using the Alt+Fx key combinations where Fx is between F1 and F6. The Alt+← and Alt+→ combinations also will
change the console.

At this point you can log into two different virtual consoles and run the links or lynx browser in one console and bash
in the other. GPM then allows copying commands from the browser with the left mouse button, switching consoles,
and pasting into the other console.

Note

As a side note, switching of virtual consoles can also be done from an X Window instance with the
Ctrl+Alt+Fx key combination, but the mouse copy operation does not work between the graphical interface
and a virtual console. You can return to the X Window display with the Ctrl+Alt+Fx combination, where
Fx is usually F1 but may be F7.

267

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/openssh.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/wget.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libtasn1.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/p11-kit.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/make-ca.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/wget.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/gpm.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/links.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/lynx.html

Linux From Scratch - Version 12.0-systemd

Part V. Appendices

Linux From Scratch - Version 12.0-systemd

Appendix A. Acronyms and Terms
ABI Application Binary Interface

ALFS Automated Linux From Scratch

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BIOS Basic Input/Output System

BLFS Beyond Linux From Scratch

BSD Berkeley Software Distribution

chroot change root

CMOS Complementary Metal Oxide Semiconductor

COS Class Of Service

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CVS Concurrent Versions System

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

EGA Enhanced Graphics Adapter

ELF Executable and Linkable Format

EOF End of File

EQN equation

ext2 second extended file system

ext3 third extended file system

ext4 fourth extended file system

FAQ Frequently Asked Questions

FHS Filesystem Hierarchy Standard

FIFO First-In, First Out

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GB Gigabytes

GCC GNU Compiler Collection

GID Group Identifier

GMT Greenwich Mean Time

HTML Hypertext Markup Language

IDE Integrated Drive Electronics

IEEE Institute of Electrical and Electronic Engineers

269

Linux From Scratch - Version 12.0-systemd

IO Input/Output

IP Internet Protocol

IPC Inter-Process Communication

IRC Internet Relay Chat

ISO International Organization for Standardization

ISP Internet Service Provider

KB Kilobytes

LED Light Emitting Diode

LFS Linux From Scratch

LSB Linux Standard Base

MB Megabytes

MBR Master Boot Record

MD5 Message Digest 5

NIC Network Interface Card

NLS Native Language Support

NNTP Network News Transport Protocol

NPTL Native POSIX Threading Library

OSS Open Sound System

PCH Pre-Compiled Headers

PCRE Perl Compatible Regular Expression

PID Process Identifier

PTY pseudo terminal

QOS Quality Of Service

RAM Random Access Memory

RPC Remote Procedure Call

RTC Real Time Clock

SBU Standard Build Unit

SCO The Santa Cruz Operation

SHA1 Secure-Hash Algorithm 1

TLDP The Linux Documentation Project

TFTP Trivial File Transfer Protocol

TLS Thread-Local Storage

UID User Identifier

umask user file-creation mask

USB Universal Serial Bus

UTC Coordinated Universal Time

270

Linux From Scratch - Version 12.0-systemd

UUID Universally Unique Identifier

VC Virtual Console

VGA Video Graphics Array

VT Virtual Terminal

271

Linux From Scratch - Version 12.0-systemd

Appendix B. Acknowledgments
We would like to thank the following people and organizations for their contributions to the Linux From Scratch Project.

• Gerard Beekmans <gerard@linuxfromscratch.org> – LFS Creator

• Bruce Dubbs <bdubbs@linuxfromscratch.org> – LFS Managing Editor

• Jim Gifford <jim@linuxfromscratch.org> – CLFS Project Co-Leader

• Pierre Labastie <pierre@linuxfromscratch.org> – BLFS Editor and ALFS Lead

• DJ Lucas <dj@linuxfromscratch.org> – LFS and BLFS Editor

• Ken Moffat <ken@linuxfromscratch.org> – BLFS Editor

• Countless other people on the various LFS and BLFS mailing lists who helped make this book possible by giving
their suggestions, testing the book, and submitting bug reports, instructions, and their experiences with installing
various packages.

Translators
• Manuel Canales Esparcia <macana@macana-es.com> – Spanish LFS translation project

• Johan Lenglet <johan@linuxfromscratch.org> – French LFS translation project until 2008

• Jean-Philippe Mengual <jmengual@linuxfromscratch.org> – French LFS translation project 2008-2016

• Julien Lepiller <jlepiller@linuxfromscratch.org> – French LFS translation project 2017-present

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Portuguese LFS translation project historical

• Jamenson Espindula <jafesp@gmail.com> – Portuguese LFS translation project 2022-present

• Thomas Reitelbach <tr@erdfunkstelle.de> – German LFS translation project

Mirror Maintainers

North American Mirrors

• Scott Kveton <scott@osuosl.org> – lfs.oregonstate.edu mirror

• William Astle <lost@l-w.net> – ca.linuxfromscratch.org mirror

• Eujon Sellers <jpolen@rackspace.com> – lfs.introspeed.com mirror

• Justin Knierim <tim@idge.net> – lfs-matrix.net mirror

South American Mirrors

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – lfsmirror.lfs-es.info mirror

• Luis Falcon <Luis Falcon> – torredehanoi.org mirror

European Mirrors

• Guido Passet <guido@primerelay.net> – nl.linuxfromscratch.org mirror

• Bastiaan Jacques <baafie@planet.nl> – lfs.pagefault.net mirror

• Sven Cranshoff <sven.cranshoff@lineo.be> – lfs.lineo.be mirror

272

mailto:gerard@linuxfromscratch.org
mailto:bdubbs@linuxfromscratch.org
mailto:jim@linuxfromscratch.org
mailto:pierre@linuxfromscratch.org
mailto:dj@linuxfromscratch.org
mailto:ken@linuxfromscratch.org
mailto:macana@macana-es.com
mailto:johan@linuxfromscratch.org
mailto:jmengual@linuxfromscratch.org
mailto:jlepiller@linuxfromscratch.org
mailto:lizardo@linuxfromscratch.org
mailto:jafesp@gmail.com
mailto:tr@erdfunkstelle.de
mailto:scott@osuosl.org
mailto:lost@l-w.net
mailto:eujon.sellers@gmail.com
mailto:justin@knierim.org
mailto:manuel@linuxfromscratch.org
mailto:lfalcon@thymbra.com
mailto:guido@primerelay.net
mailto:baafie@planet.nl
mailto:sven.cranshoff@lineo.be

Linux From Scratch - Version 12.0-systemd

• Scarlet Belgium – lfs.scarlet.be mirror

• Sebastian Faulborn <info@aliensoft.org> – lfs.aliensoft.org mirror

• Stuart Fox <stuart@dontuse.ms> – lfs.dontuse.ms mirror

• Ralf Uhlemann <admin@realhost.de> – lfs.oss-mirror.org mirror

• Antonin Sprinzl <Antonin.Sprinzl@tuwien.ac.at> – at.linuxfromscratch.org mirror

• Fredrik Danerklint <fredan-lfs@fredan.org> – se.linuxfromscratch.org mirror

• Franck <franck@linuxpourtous.com> – lfs.linuxpourtous.com mirror

• Philippe Baque <baque@cict.fr> – lfs.cict.fr mirror

• Vitaly Chekasin <gyouja@pilgrims.ru> – lfs.pilgrims.ru mirror

• Benjamin Heil <kontakt@wankoo.org> – lfs.wankoo.org mirror

• Anton Maisak <info@linuxfromscratch.org.ru> – linuxfromscratch.org.ru mirror

Asian Mirrors

• Satit Phermsawang <satit@wbac.ac.th> – lfs.phayoune.org mirror

• Shizunet Co.,Ltd. <info@shizu-net.jp> – lfs.mirror.shizu-net.jp mirror

Australian Mirrors

• Jason Andrade <jason@dstc.edu.au> – au.linuxfromscratch.org mirror

Former Project Team Members
• Christine Barczak <theladyskye@linuxfromscratch.org> – LFS Book Editor

• Archaic <archaic@linuxfromscratch.org> – LFS Technical Writer/Editor, HLFS Project Leader, BLFS Editor,
Hints and Patches Project Maintainer

• Matthew Burgess <matthew@linuxfromscratch.org> – LFS Project Leader, LFS Technical Writer/Editor

• Nathan Coulson <nathan@linuxfromscratch.org> – LFS-Bootscripts Maintainer

• Timothy Bauscher

• Robert Briggs

• Ian Chilton

• Jeroen Coumans <jeroen@linuxfromscratch.org> – Website Developer, FAQ Maintainer

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – LFS/BLFS/HLFS XML and XSL Maintainer

• Alex Groenewoud – LFS Technical Writer

• Marc Heerdink

• Jeremy Huntwork <jhuntwork@linuxfromscratch.org> – LFS Technical Writer, LFS LiveCD Maintainer

• Bryan Kadzban <bryan@linuxfromscratch.org> – LFS Technical Writer

• Mark Hymers

• Seth W. Klein – FAQ maintainer

• Nicholas Leippe <nicholas@linuxfromscratch.org> – Wiki Maintainer

273

mailto:info@aliensoft.org
mailto:stuart@dontuse.ms
mailto:admin@realhost.de
mailto:Antonin.Sprinzl@tuwien.ac.at
mailto:fredan-lfs@fredan.org
mailto:franck@linuxpourtous.com
mailto:baque@cict.fr
mailto:gyouja@pilgrims.ru
mailto:kontakt@wankoo.org
mailto:info@linuxfromscratch.org.ru
mailto:satit@wbac.ac.th
mailto:info@shizu-net.jp
mailto:jason@dstc.edu.au
mailto:theladyskye@linuxfromscratch.org
mailto:matthew@linuxfromscratch.org
mailto:nathan@linuxfromscratch.org
mailto:jeroen@linuxfromscratch.org
mailto:manuel@linuxfromscratch.org
mailto:jhuntwork@linuxfromscratch.org
mailto:bryan@linuxfromscratch.org
mailto:nicholas@linuxfromscratch.org

Linux From Scratch - Version 12.0-systemd

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Website Backend-Scripts Maintainer

• Randy McMurchy <randy@linuxfromscratch.org> – BLFS Project Leader, LFS Editor

• Dan Nicholson <dnicholson@linuxfromscratch.org> – LFS and BLFS Editor

• Alexander E. Patrakov <alexander@linuxfromscratch.org> – LFS Technical Writer, LFS Internationalization
Editor, LFS Live CD Maintainer

• Simon Perreault

• Scot Mc Pherson <scot@linuxfromscratch.org> – LFS NNTP Gateway Maintainer

• Douglas R. Reno <renodr@linuxfromscratch.org> – Systemd Editor

• Ryan Oliver <ryan@linuxfromscratch.org> – CLFS Project Co-Leader

• Greg Schafer <gschafer@zip.com.au> – LFS Technical Writer and Architect of the Next Generation 64-bit-
enabling Build Method

• Jesse Tie-Ten-Quee – LFS Technical Writer

• James Robertson <jwrober@linuxfromscratch.org> – Bugzilla Maintainer

• Tushar Teredesai <tushar@linuxfromscratch.org> – BLFS Book Editor, Hints and Patches Project Leader

• Jeremy Utley <jeremy@linuxfromscratch.org> – LFS Technical Writer, Bugzilla Maintainer, LFS-Bootscripts
Maintainer

• Zack Winkles <zwinkles@gmail.com> – LFS Technical Writer

274

mailto:lizardo@linuxfromscratch.org
mailto:randy@linuxfromscratch.org
mailto:dnicholson@linuxfromscratch.org
mailto:alexander@linuxfromscratch.org
mailto:scot@linuxfromscratch.org
mailto:renodr@linuxfromscratch.org
mailto:ryan@linuxfromscratch.org
mailto:gschafer@zip.com.au
mailto:jwrober@linuxfromscratch.org
mailto:tushar@linuxfromscratch.org
mailto:jeremy@linuxfromscratch.org
mailto:zwinkles@gmail.com

Linux From Scratch - Version 12.0-systemd

Appendix C. Dependencies
Every package built in LFS relies on one or more other packages in order to build and install properly. Some packages
even participate in circular dependencies, that is, the first package depends on the second which in turn depends on the
first. Because of these dependencies, the order in which packages are built in LFS is very important. The purpose of
this page is to document the dependencies of each package built in LFS.

For each package that is built, there are three, and sometimes up to five types of dependencies listed below. The first
lists what other packages need to be available in order to compile and install the package in question. The second lists
the packages that must be available when any programs or libraries from the package are used at runtime. The third
lists what packages, in addition to those on the first list, need to be available in order to run the test suites. The fourth
list of dependencies are packages that require this package to be built and installed in its final location before they are
built and installed. In most cases, this is because these packages will hard code paths to binaries within their scripts.
If not built in a certain order, this could result in paths of /tools/bin/[binary] being placed inside scripts installed to the
final system. This is obviously not desirable.

The last list of dependencies are optional packages that are not addressed in LFS, but could be useful to the user.
These packages may have additional mandatory or optional dependencies of their own. For these dependencies, the
recommended practice is to install them after completion of the LFS book and then go back and rebuild the LFS package.
In several cases, re-installation is addressed in BLFS.

Acl
Installation depends on: Attr, Bash, Binutils, Coreutils, GCC, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo

Required at runtime: Attr and Glibc

Test suite depends on: Automake, Diffutils, Findutils, and Libtool

Must be installed before: Coreutils, Sed, Tar, and Vim

Optional dependencies: None

Attr
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Perl, Sed, and Texinfo

Required at runtime: Glibc

Test suite depends on: Automake, Diffutils, Findutils, and Libtool

Must be installed before: Acl and Libcap

Optional dependencies: None

Autoconf
Installation depends on: Bash, Coreutils, Grep, M4, Make, Perl, Sed, and Texinfo

Required at runtime: Bash, Coreutils, Grep, M4, Make, Sed, and Texinfo

Test suite depends on: Automake, Diffutils, Findutils, GCC, and Libtool

Must be installed before: Automake and Coreutils

Optional dependencies: Emacs

275

https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/emacs.html

Linux From Scratch - Version 12.0-systemd

Automake
Installation depends on: Autoconf, Bash, Coreutils, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo
Required at runtime: Bash, Coreutils, Grep, M4, Sed, and Texinfo
Test suite depends on: Binutils, Bison, Bzip2, DejaGNU, Diffutils, Expect, Findutils, Flex, GCC, Gettext, Gzip,

Libtool, and Tar
Must be installed before: Coreutils
Optional dependencies: None

Bash
Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Ncurses,

Patch, Readline, Sed, and Texinfo
Required at runtime: Glibc, Ncurses, and Readline
Test suite depends on: Expect and Shadow
Must be installed before: None
Optional dependencies: Xorg

Bc
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, and Readline
Required at runtime: Glibc, Ncurses, and Readline
Test suite depends on: Gawk
Must be installed before: Linux
Optional dependencies: None

Binutils
Installation depends on: Bash, Binutils, Coreutils, Diffutils, File, Flex, Gawk, GCC, Glibc, Grep, Make, Perl, Sed,

Texinfo, and Zlib
Required at runtime: Glibc and Zlib
Test suite depends on: DejaGNU and Expect
Must be installed before: None
Optional dependencies: Elfutils and Jansson

Bison
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Perl, and Sed
Required at runtime: Glibc
Test suite depends on: Diffutils, Findutils, and Flex
Must be installed before: Kbd and Tar
Optional dependencies: Doxygen

Bzip2
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Make, and Patch
Required at runtime: Glibc
Test suite depends on: None
Must be installed before: File and Libelf
Optional dependencies: None

276

https://www.linuxfromscratch.org/blfs/view/stable-systemd/x/installing.html
https://sourceware.org/elfutils/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/jansson.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/doxygen.html

Linux From Scratch - Version 12.0-systemd

Check
Installation depends on: Gawk, GCC, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Gawk
Test suite depends on: None
Must be installed before: None
Optional dependencies: libsubunit

Coreutils
Installation depends on: Autoconf, Automake, Bash, Binutils, Coreutils, GCC, Gettext, Glibc, GMP, Grep,

Libcap, Make, OpenSSL, Patch, Perl, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Diffutils, E2fsprogs, Findutils, Shadow, and Util-linux
Must be installed before: Bash, Diffutils, Findutils, Man-DB, and Systemd
Optional dependencies: Expect.pm and IO::Tty

D-Bus
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Pkgconf, Sed,

Systemd, and Util-linux
Required at runtime: Glibc and Systemd
Test suite depends on: Several packages in BLFS
Must be installed before: None
Optional dependencies: Xorg Libraries

DejaGNU
Installation depends on: Bash, Coreutils, Diffutils, Expect, GCC, Grep, Make, Sed, and Texinfo
Required at runtime: Expect and Bash
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Diffutils
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Perl
Must be installed before: None
Optional dependencies: None

E2fsprogs
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Gzip, Make, Pkgconf, Sed,

Systemd, Texinfo, and Util-linux
Required at runtime: Glibc and Util-linux
Test suite depends on: Procps-ng and Psmisc
Must be installed before: None
Optional dependencies: None

277

https://github.com/testing-cabal/subunit
https://metacpan.org/pod/Expect
https://metacpan.org/pod/IO::Tty
https://www.linuxfromscratch.org/blfs/view/stable-systemd/x/x7lib.html

Linux From Scratch - Version 12.0-systemd

Expat
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, and Sed
Required at runtime: Glibc
Test suite depends on: None
Must be installed before: Python and XML::Parser
Optional dependencies: None

Expect
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Patch, Sed, and Tcl
Required at runtime: Glibc and Tcl
Test suite depends on: None
Must be installed before: None
Optional dependencies: Tk

File
Installation depends on: Bash, Binutils, Bzip2, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, Xz, and

Zlib
Required at runtime: Glibc, Bzip2, Xz, and Zlib
Test suite depends on: None
Must be installed before: None
Optional dependencies: libseccomp

Findutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Glibc
Test suite depends on: DejaGNU, Diffutils, and Expect
Must be installed before: None
Optional dependencies: None

Flex
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Patch, Sed, and Texinfo
Required at runtime: Bash, Glibc, and M4
Test suite depends on: Bison and Gawk
Must be installed before: Binutils, IProute2, Kbd, Kmod, and Man-DB
Optional dependencies: None

Flit-Core
Installation depends on: Python
Required at runtime: Python
Test suite depends on: No test suite available
Must be installed before: Wheel
Optional dependencies: pytest and testpath

278

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/tk.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libseccomp.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/python-modules.html#pytest
https://pypi.org/project/testpath

Linux From Scratch - Version 12.0-systemd

Gawk
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, GMP, Grep, Make, MPFR, Patch,

Readline, Sed, and Texinfo
Required at runtime: Bash, Glibc, and Mpfr
Test suite depends on: Diffutils
Must be installed before: None
Optional dependencies: libsigsegv

GCC
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, GMP, Grep,

Libxcrypt, M4, Make, MPC, MPFR, Patch, Perl, Sed, Tar, Texinfo, and Zstd
Required at runtime: Bash, Binutils, Glibc, Mpc, and Python
Test suite depends on: DejaGNU, Expect, and Shadow
Must be installed before: None
Optional dependencies: GDC, GNAT, and ISL

GDBM
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Grep, Make, and Sed
Required at runtime: Bash, Glibc, and Readline
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Gettext
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, Sed, and Texinfo
Required at runtime: Acl, Bash, Gcc, and Glibc
Test suite depends on: Diffutils, Perl, and Tcl
Must be installed before: Automake and Bison
Optional dependencies: None

Glibc
Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep, Gzip, Linux API

Headers, Make, Perl, Python, Sed, and Texinfo
Required at runtime: None
Test suite depends on: File
Must be installed before: None
Optional dependencies: None

GMP
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, M4, Make, Sed, and

Texinfo
Required at runtime: GCC and Glibc
Test suite depends on: None
Must be installed before: MPFR and GCC
Optional dependencies: None

279

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libsigsegv.html
https://www.gdcproject.org/
https://gcc.gnu.org/wiki/GNAT
https://repo.or.cz/isl.git

Linux From Scratch - Version 12.0-systemd

Gperf
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, and Make
Required at runtime: GCC and Glibc
Test suite depends on: Diffutils and Expect
Must be installed before: None
Optional dependencies: None

Grep
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Patch, Sed, and

Texinfo
Required at runtime: Glibc
Test suite depends on: Gawk
Must be installed before: Man-DB
Optional dependencies: PCRE2 and libsigsegv

Groff
Installation depends on: Bash, Binutils, Bison, Coreutils, Gawk, GCC, Glibc, Grep, Make, Patch, Sed, and

Texinfo
Required at runtime: GCC, Glibc, and Perl
Test suite depends on: No test suite available
Must be installed before: Man-DB and Perl
Optional dependencies: ghostscript and Uchardet

GRUB
Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses,

Sed, Texinfo, and Xz
Required at runtime: Bash, GCC, Gettext, Glibc, Xz, and Sed.
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Gzip
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Glibc
Test suite depends on: Diffutils and Less
Must be installed before: Man-DB
Optional dependencies: None

Iana-Etc
Installation depends on: Coreutils
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: Perl
Optional dependencies: None

280

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/pcre2.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libsigsegv.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/pst/gs.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/uchardet.html

Linux From Scratch - Version 12.0-systemd

Inetutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Ncurses, Patch, Sed, Texinfo, and

Zlib
Required at runtime: GCC, Glibc, Ncurses, and Readline
Test suite depends on: None
Must be installed before: Tar
Optional dependencies: None

Intltool
Installation depends on: Bash, Gawk, Glibc, Make, Perl, Sed, and XML::Parser
Required at runtime: Autoconf, Automake, Bash, Glibc, Grep, Perl, and Sed
Test suite depends on: Perl
Must be installed before: None
Optional dependencies: None

IProute2
Installation depends on: Bash, Bison, Coreutils, Flex, GCC, Glibc, Make, Libcap, Libelf, Linux API Headers,

Pkgconf, and Zlib
Required at runtime: Bash, Coreutils, Glibc, Libcap, Libelf, and Zlib
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: Berkeley DB, iptables, libbpf, libmnl, and libtirpc

Jinja2
Installation depends on: MarkupSafe and Python
Required at runtime: MarkupSafe and Python
Test suite depends on: No test suite available
Must be installed before: Systemd
Optional dependencies: None

Kbd
Installation depends on: Bash, Binutils, Bison, Check, Coreutils, Flex, GCC, Gettext, Glibc, Gzip, Make, Patch,

and Sed
Required at runtime: Bash, Coreutils, and Glibc
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Kmod
Installation depends on: Bash, Binutils, Bison, Coreutils, Flex, GCC, Gettext, Glibc, Gzip, Make, OpenSSL,

Pkgconf, Sed, Xz, and Zlib
Required at runtime: Glibc, Xz, and Zlib
Test suite depends on: No test suite available
Must be installed before: Systemd
Optional dependencies: None

281

https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/db.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/iptables.html
https://github.com/libbpf/libbpf
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/libmnl.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/libtirpc.html

Linux From Scratch - Version 12.0-systemd

Less
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed

Required at runtime: Glibc and Ncurses

Test suite depends on: No test suite available

Must be installed before: Gzip

Optional dependencies: PCRE2 or PCRE

Libcap
Installation depends on: Attr, Bash, Binutils, Coreutils, GCC, Glibc, Perl, Make, and Sed

Required at runtime: Glibc

Test suite depends on: None

Must be installed before: IProute2 and Shadow

Optional dependencies: Linux-PAM

Libelf
Installation depends on: Bash, Binutils, Bzip2, Coreutils, GCC, Glibc, Make, Xz, Zlib, and Zstd

Required at runtime: Bzip2, Glibc, Xz, Zlib, and Zstd

Test suite depends on: None

Must be installed before: IProute2 and Linux

Optional dependencies: None

Libffi
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Sed

Required at runtime: Glibc

Test suite depends on: DejaGnu

Must be installed before: Python

Optional dependencies: None

Libpipeline
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo

Required at runtime: Glibc

Test suite depends on: Check and Pkgconf

Must be installed before: Man-DB

Optional dependencies: None

Libtool
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo

Required at runtime: Autoconf, Automake, Bash, Binutils, Coreutils, File, GCC, Glibc, Grep, Make, and Sed

Test suite depends on: Autoconf, Automake, and Findutils

Must be installed before: None

Optional dependencies: None

282

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/pcre2.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/pcre.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/linux-pam.html

Linux From Scratch - Version 12.0-systemd

Libxcrypt
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Perl, and Sed
Required at runtime: Glibc
Test suite depends on: None
Must be installed before: GCC, Perl, Python, Shadow, and Systemd
Optional dependencies: None

Linux
Installation depends on: Bash, Bc, Binutils, Coreutils, Diffutils, Findutils, GCC, Glibc, Grep, Gzip, Kmod, Libelf,

Make, Ncurses, OpenSSL, Perl, and Sed
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: cpio and LLVM (with Clang)

Linux API Headers
Installation depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Gzip, Make, Perl, and Sed
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

M4
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Glibc
Test suite depends on: Diffutils
Must be installed before: Autoconf and Bison
Optional dependencies: libsigsegv

Make
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Perl and Procps-ng
Must be installed before: None
Optional dependencies: Guile

Man-DB
Installation depends on: Bash, Binutils, Bzip2, Coreutils, Flex, GCC, GDBM, Gettext, Glibc, Grep, Groff, Gzip,

Less, Libpipeline, Make, Pkgconf, Sed, Systemd, and Xz
Required at runtime: Bash, GDBM, Groff, Glibc, Gzip, Less, Libpipeline, and Zlib
Test suite depends on: Util-linux
Must be installed before: None
Optional dependencies: libseccomp and po4a

283

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/cpio.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/llvm.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libsigsegv.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/guile.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libseccomp.html
https://po4a.org/index.php.en

Linux From Scratch - Version 12.0-systemd

Man-Pages
Installation depends on: Bash, Coreutils, and Make
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

MarkupSafe
Installation depends on: Python
Required at runtime: Python
Test suite depends on: No test suite available
Must be installed before: Jinja2
Optional dependencies: None

Meson
Installation depends on: Ninja and Python
Required at runtime: Python
Test suite depends on: No test suite available
Must be installed before: Systemd
Optional dependencies: None

MPC
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, GMP, Make, MPFR, Sed,

and Texinfo
Required at runtime: Glibc, GMP, and MPFR
Test suite depends on: None
Must be installed before: GCC
Optional dependencies: None

MPFR
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, GMP, Make, Sed, and

Texinfo
Required at runtime: Glibc and GMP
Test suite depends on: None
Must be installed before: Gawk and GCC
Optional dependencies: None

Ncurses
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Patch, and Sed
Required at runtime: Glibc
Test suite depends on: No test suite available
Must be installed before: Bash, GRUB, Inetutils, Less, Procps-ng, Psmisc, Readline, Texinfo, Util-linux, and Vim
Optional dependencies: None

284

Linux From Scratch - Version 12.0-systemd

Ninja
Installation depends on: Binutils, Coreutils, GCC, and Python
Required at runtime: GCC and Glibc
Test suite depends on: None
Must be installed before: Meson
Optional dependencies: Asciidoc, Doxygen, Emacs, and re2c

OpenSSL
Installation depends on: Binutils, Coreutils, GCC, Make, and Perl
Required at runtime: Glibc and Perl
Test suite depends on: None
Must be installed before: Coreutils, Kmod, Linux, and Systemd
Optional dependencies: None

Patch
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, and Sed
Required at runtime: Glibc
Test suite depends on: Diffutils
Must be installed before: None
Optional dependencies: Ed

Perl
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, GDBM, Glibc, Grep, Groff, Libxcrypt, Make,

Sed, and Zlib
Required at runtime: GDBM, Glibc, and Libxcrypt
Test suite depends on: Iana-Etc, Less. and Procps-ng
Must be installed before: Autoconf
Optional dependencies: Berkeley DB

Pkgconf
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, and Sed
Required at runtime: Glibc
Test suite depends on: None
Must be installed before: D-Bus, E2fsprogs, IProute2, Kmod, Man-DB, Procps-ng, Python, Systemd , and Util-

linux
Optional dependencies: None

Procps-ng
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, Ncurses, Pkgconf, and Systemd
Required at runtime: Glibc
Test suite depends on: DejaGNU
Must be installed before: None
Optional dependencies: None

285

https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/asciidoc.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/doxygen.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/emacs.html
https://re2c.org/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/ed.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/db.html

Linux From Scratch - Version 12.0-systemd

Psmisc
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, and Sed

Required at runtime: Glibc and Ncurses

Test suite depends on: No test suite available

Must be installed before: None

Optional dependencies: None

Python
Installation depends on: Bash, Binutils, Coreutils, Expat, GCC, Gdbm, Gettext, Glibc, Grep, Libffi, Libxcrypt,

Make, Ncurses, OpenSSL, Pkgconf, Sed, and Util-linux

Required at runtime: Bzip2, Expat, Gdbm, Glibc, Libffi, Libxcrypt, Ncurses, OpenSSL, and Zlib

Test suite depends on: GDB and Valgrind

Must be installed before: Ninja

Optional dependencies: Berkeley DB, libnsl, SQLite, and Tk

Readline
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, Patch, Sed, and

Texinfo

Required at runtime: Glibc and Ncurses

Test suite depends on: No test suite available

Must be installed before: Bash, Bc, and Gawk

Optional dependencies: None

Sed
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo

Required at runtime: Acl, Attr, and Glibc

Test suite depends on: Diffutils and Gawk

Must be installed before: E2fsprogs, File, Libtool, and Shadow

Optional dependencies: None

Shadow
Installation depends on: Acl, Attr, Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc,

Grep, Libcap, Libxcrypt, Make, and Sed

Required at runtime: Glibc and Libxcrypt

Test suite depends on: No test suite available

Must be installed before: Coreutils

Optional dependencies: CrackLib and Linux-PAM

286

https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/db.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/libnsl.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/server/sqlite.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/tk.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/cracklib.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/linux-pam.html

Linux From Scratch - Version 12.0-systemd

Systemd
Installation depends on: Acl, Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Gperf, Grep, Jinja2, Libcap,

Libxcrypt, Meson, OpenSSL, Pkgconf, Sed, Util-linux, and Zstd

Required at runtime: Acl, Glibc, Libcap, Libxcrypt, OpenSSL, Util-linux, Xz, Zlib, and Zstd

Test suite depends on: None

Must be installed before: D-Bus, E2fsprogs, Man-DB, Procps-ng, and Util-linux

Optional dependencies: AppArmor, audit-userspace, bash-completion, btrfs-progs, cURL, cryptsetup, docbook-
xml, docbook-xsl-nons, Git, GnuTLS, iptables, jekyll, kexec-tools, libbpf, libdw, libfido2,
libgcrypt, libidn2, libmicrohttpd, libpwquality, libseccomp, libxkbcommon, libxslt,
Linux-PAM, lxml, LZ4, make-ca, p11-kit, PCRE2, Polkit, pyelftools, qemu, qrencode,
quota-tools, rpm, rsync, SELinux, Sphinx, systemtap, tpm2-tss, Valgrind, Xen, and zsh

Tar
Installation depends on: Acl, Attr, Bash, Binutils, Bison, Coreutils, GCC, Gettext, Glibc, Grep, Inetutils, Make,

Sed, and Texinfo

Required at runtime: Acl, Attr, Bzip2, Glibc, Gzip, and Xz

Test suite depends on: Autoconf, Diffutils, Findutils, Gawk, and Gzip

Must be installed before: None

Optional dependencies: None

Tcl
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed

Required at runtime: Glibc and Zlib

Test suite depends on: None

Must be installed before: None

Optional dependencies: None

Texinfo
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, Patch, and Sed

Required at runtime: Glibc and Ncurses

Test suite depends on: None

Must be installed before: None

Optional dependencies: None

Util-linux
Installation depends on: Bash, Binutils, Coreutils, Diffutils, File, Findutils, Gawk, GCC, Gettext, Glibc, Grep,

Make, Ncurses, Pkgconf, Sed, Systemd , and Zlib

Required at runtime: Glibc, Ncurses, Readline, Systemd , and Zlib

Test suite depends on: None

Must be installed before: None

Optional dependencies: Libcap-NG, libeconf, libuser, libutempter, Linux-PAM, smartmontools, and slang

287

https://www.apparmor.net/
https://github.com/linux-audit/audit-userspace
https://github.com/scop/bash-completion
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/btrfs-progs.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/curl.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/cryptsetup.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/pst/docbook.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/pst/docbook.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/pst/docbook-xsl.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/git.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/gnutls.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/iptables.html
https://jekyllrb.com/
https://www.kernel.org/pub/linux/utils/kernel/kexec/
https://github.com/libbpf/libbpf
https://sourceware.org/elfutils/
https://developers.yubico.com/libfido2/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libgcrypt.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libidn2.html
https://www.gnu.org/software/libmicrohttpd/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/libpwquality.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libseccomp.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libxkbcommon.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/libxslt.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/linux-pam.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/python-modules.html#lxml
https://lz4.github.io/lz4/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/make-ca.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/p11-kit.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/pcre2.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/polkit.html
https://pypi.org/project/pyelftools
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/qemu.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/qrencode.html
https://sourceforge.net/projects/linuxquota/
https://rpm.org
https://www.linuxfromscratch.org/blfs/view/stable-systemd/basicnet/rsync.html
https://github.com/SELinuxProject/selinux
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/python-modules.html#sphinx
https://sourceware.org/systemtap/
https://tpm2-tss.readthedocs.io/en/latest/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/valgrind.html
https://xenproject.org
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/zsh.html
https://people.redhat.com/sgrubb/libcap-ng/
https://github.com/openSUSE/libeconf
https://pagure.io/libuser/
https://github.com/altlinux/libutempter
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/linux-pam.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/postlfs/smartmontools.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/slang.html

Linux From Scratch - Version 12.0-systemd

Vim
Installation depends on: Acl, Attr, Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed

Required at runtime: Acl, Attr, Glibc, Python, Ncurses, and Tcl

Test suite depends on: None

Must be installed before: None

Optional dependencies: Xorg, GTK+2, LessTif, Ruby, and GPM

wheel
Installation depends on: Python and Flit-core

Required at runtime: Python

Test suite depends on: No test suite available

Must be installed before: Jinja2

Optional dependencies: None

XML::Parser
Installation depends on: Bash, Binutils, Coreutils, Expat, GCC, Glibc, Make, and Perl

Required at runtime: Expat, Glibc, and Perl

Test suite depends on: Perl

Must be installed before: Intltool

Optional dependencies: None

Xz
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, and Make

Required at runtime: Glibc

Test suite depends on: None

Must be installed before: File, GRUB, Kmod, Libelf, Man-DB, and Systemd

Optional dependencies: None

Zlib
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Sed

Required at runtime: Glibc

Test suite depends on: None

Must be installed before: File, Kmod, Libelf, Perl, and Util-linux

Optional dependencies: None

Zstd
Installation depends on: Binutils, Coreutils, GCC, Glibc, Gzip, Make, Xz, and Zlib

Required at runtime: Glibc

Test suite depends on: None

Must be installed before: GCC, Libelf, and Systemd

Optional dependencies: LZ4

288

https://www.linuxfromscratch.org/blfs/view/stable-systemd/x/installing.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/x/gtk2.html
https://lesstif.sourceforge.net/
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/ruby.html
https://www.linuxfromscratch.org/blfs/view/stable-systemd/general/gpm.html
https://lz4.github.io/lz4/

Linux From Scratch - Version 12.0-systemd

Appendix D. LFS Licenses
This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 License.

Computer instructions may be extracted from the book under the MIT License.

D.1. Creative Commons License
Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike 2.0

Important

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL
SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT
RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS.
CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED,
AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS
PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED
HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its
entirety in unmodified form, along with a number of other contributions, constituting separate and independent
works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not
be considered a Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as
a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or
adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the
purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording,
the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a
Derivative Work for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this License.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the
terms of this License with respect to the Work, or who has received express permission from the Licensor to
exercise rights under this License despite a previous violation.

289

Linux From Scratch - Version 12.0-systemd

g. "License Elements" means the following high-level license attributes as selected by Licensor and indicated in
the title of this License: Attribution, Noncommercial, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first
sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-
free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the
Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work
as incorporated in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of
a digital audio transmission Derivative Works;

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above
rights include the right to make such modifications as are technically necessary to exercise the rights in other media
and formats. All rights not expressly granted by Licensor are hereby reserved, including but not limited to the rights
set forth in Sections 4(e) and 4(f).

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the
terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with
every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally
perform. You may not offer or impose any terms on the Work that alter or restrict the terms of this License
or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly
display, publicly perform, or publicly digitally perform the Work with any technological measures that control
access or use of the Work in a manner inconsistent with the terms of this License Agreement. The above applies
to the Work as incorporated in a Collective Work, but this does not require the Collective Work apart from
the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice
from any Licensor You must, to the extent practicable, remove from the Collective Work any reference to such
Licensor or the Original Author, as requested. If You create a Derivative Work, upon notice from any Licensor
You must, to the extent practicable, remove from the Derivative Work any reference to such Licensor or the
Original Author, as requested.

b. You may distribute, publicly display, publicly perform, or publicly digitally perform a Derivative Work only
under the terms of this License, a later version of this License with the same License Elements as this License, or a
Creative Commons iCommons license that contains the same License Elements as this License (e.g. Attribution-
NonCommercial-ShareAlike 2.0 Japan). You must include a copy of, or the Uniform Resource Identifier for, this
License or other license specified in the previous sentence with every copy or phonorecord of each Derivative
Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or
impose any terms on the Derivative Works that alter or restrict the terms of this License or the recipients'
exercise of the rights granted hereunder, and You must keep intact all notices that refer to this License and to
the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly digitally
perform the Derivative Work with any technological measures that control access or use of the Work in a manner

290

Linux From Scratch - Version 12.0-systemd

inconsistent with the terms of this License Agreement. The above applies to the Derivative Work as incorporated
in a Collective Work, but this does not require the Collective Work apart from the Derivative Work itself to be
made subject to the terms of this License.

c. You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended
for or directed toward commercial advantage or private monetary compensation. The exchange of the Work for
other copyrighted works by means of digital file-sharing or otherwise shall not be considered to be intended for
or directed toward commercial advantage or private monetary compensation, provided there is no payment of
any monetary compensation in connection with the exchange of copyrighted works.

d. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative
Works or Collective Works, You must keep intact all copyright notices for the Work and give the Original Author
credit reasonable to the medium or means You are utilizing by conveying the name (or pseudonym if applicable)
of the Original Author if supplied; the title of the Work if supplied; to the extent reasonably practicable, the
Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI
does not refer to the copyright notice or licensing information for the Work; and in the case of a Derivative
Work, a credit identifying the use of the Work in the Derivative Work (e.g., "French translation of the Work by
Original Author," or "Screenplay based on original Work by Original Author"). Such credit may be implemented
in any reasonable manner; provided, however, that in the case of a Derivative Work or Collective Work, at a
minimum such credit will appear where any other comparable authorship credit appears and in a manner at least
as prominent as such other comparable authorship credit.

e. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether
individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public
performance or public digital performance (e.g. webcast) of the Work if that performance is primarily intended
for or directed toward commercial advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your
distribution of such cover version is primarily intended for or directed toward commercial advantage or private
monetary compensation. 6. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where
the Work is a sound recording, Licensor reserves the exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast)
of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or
the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or directed
toward commercial advantage or private monetary compensation.

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording,
Licensor reserves the exclusive right to collect, whether individually or via a performance-rights society
(e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the
compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other
jurisdictions), if Your public digital performance is primarily intended for or directed toward commercial
advantage or private monetary compensation.

5. Representations, Warranties and Disclaimer

291

Linux From Scratch - Version 12.0-systemd

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE
USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms
of this License. Individuals or entities who have received Derivative Works or Collective Works from You under
this License, however, will not have their licenses terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under
different license terms or to stop distributing the Work at any time; provided, however that any such election
will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the
terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a
license to the original Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity
or enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any communication from You. This License may
not be modified without the mutual written agreement of the Licensor and You.

292

Linux From Scratch - Version 12.0-systemd

Important

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages arising
in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, neither
party will use the trademark "Creative Commons" or any related trademark or logo of Creative Commons
without the prior written consent of Creative Commons. Any permitted use will be in compliance with
Creative Commons' then-current trademark usage guidelines, as may be published on its website or otherwise
made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

D.2. The MIT License
Copyright © 1999-2023 Gerard Beekmans

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

293

http://creativecommons.org/

Linux From Scratch - Version 12.0-systemd

Index
Packages
Acl: 129
Attr: 128
Autoconf: 166
Automake: 168
Bash: 152
tools: 59

Bash: 152
tools: 59

Bc: 114
Binutils: 121
tools, pass 1: 44
tools, pass 2: 72

Binutils: 121
tools, pass 1: 44
tools, pass 2: 72

Binutils: 121
tools, pass 1: 44
tools, pass 2: 72

Bison: 150
tools: 82

Bison: 150
tools: 82

Bzip2: 105
Check: 187
Coreutils: 182
tools: 60

Coreutils: 182
tools: 60

D-Bus: 217
DejaGNU: 120
Diffutils: 188
tools: 61

Diffutils: 188
tools: 61

E2fsprogs: 229
Expat: 157
Expect: 118
File: 110
tools: 62

File: 110
tools: 62

Findutils: 190
tools: 63

Findutils: 190
tools: 63

Flex: 115
Flit-core: 178
Gawk: 189
tools: 64

Gawk: 189
tools: 64

GCC: 137
tools, libstdc++ pass 1: 53
tools, pass 1: 46
tools, pass 2: 73

GCC: 137
tools, libstdc++ pass 1: 53
tools, pass 1: 46
tools, pass 2: 73

GCC: 137
tools, libstdc++ pass 1: 53
tools, pass 1: 46
tools, pass 2: 73

GCC: 137
tools, libstdc++ pass 1: 53
tools, pass 1: 46
tools, pass 2: 73

GDBM: 155
Gettext: 148
tools: 81

Gettext: 148
tools: 81

Glibc: 97
tools: 50

Glibc: 97
tools: 50

GMP: 124
Gperf: 156
Grep: 151
tools: 65

Grep: 151
tools: 65

Groff: 191
GRUB: 194
Gzip: 196
tools: 66

Gzip: 196
tools: 66

Iana-Etc: 96
Inetutils: 158

294

Linux From Scratch - Version 12.0-systemd

Intltool: 165
IPRoute2: 197
Jinja2: 211
Kbd: 199
Kmod: 171
Less: 160
Libcap: 130
Libelf: 173
libffi: 174
Libpipeline: 201
Libtool: 154
Libxcrypt: 131
Linux: 254
tools, API headers: 49

Linux: 254
tools, API headers: 49

M4: 113
tools: 56

M4: 113
tools: 56

Make: 202
tools: 67

Make: 202
tools: 67

Man-DB: 219
Man-pages: 95
MarkupSafe: 210
Meson: 181
MPC: 127
MPFR: 126
Ncurses: 143
tools: 57

Ncurses: 143
tools: 57

Ninja: 180
OpenSSL: 169
Patch: 203
tools: 68

Patch: 203
tools: 68

Perl: 161
tools: 83

Perl: 161
tools: 83

Pkgconf: 142
Procps-ng: 222
Psmisc: 147

Python: 175
temporary: 84

Python: 175
temporary: 84

Readline: 111
Sed: 146
tools: 69

Sed: 146
tools: 69

Shadow: 133
configuring: 134

Shadow: 133
configuring: 134

systemd: 212
Tar: 204
tools: 70

Tar: 204
tools: 70

Tcl: 116
Texinfo: 205
temporary: 85

Texinfo: 205
temporary: 85

Udev
usage: 239

Util-linux: 224
tools: 86

Util-linux: 224
tools: 86

Vim: 207
wheel: 179
XML::Parser: 164
Xz: 107
tools: 71

Xz: 107
tools: 71

Zlib: 104
zstd: 109

Programs
[: 182, 183
2to3: 175
accessdb: 219, 220
aclocal: 168, 168
aclocal-1.16: 168, 168
addftinfo: 191, 191
addpart: 224, 225

295

Linux From Scratch - Version 12.0-systemd

addr2line: 121, 122
afmtodit: 191, 191
agetty: 224, 225
apropos: 219, 220
ar: 121, 122
as: 121, 122
attr: 128, 128
autoconf: 166, 166
autoheader: 166, 166
autom4te: 166, 166
automake: 168, 168
automake-1.16: 168, 168
autopoint: 148, 148
autoreconf: 166, 166
autoscan: 166, 166
autoupdate: 166, 167
awk: 189, 189
b2sum: 182, 183
badblocks: 229, 230
base64: 182, 183, 182, 183
base64: 182, 183, 182, 183
basename: 182, 183
basenc: 182, 183
bash: 152, 153
bashbug: 152, 153
bc: 114, 114
bison: 150, 150
blkdiscard: 224, 225
blkid: 224, 225
blkzone: 224, 225
blockdev: 224, 225
bomtool: 142, 142
bridge: 197, 197
bunzip2: 105, 106
busctl: 212, 214
bzcat: 105, 106
bzcmp: 105, 106
bzdiff: 105, 106
bzegrep: 105, 106
bzfgrep: 105, 106
bzgrep: 105, 106
bzip2: 105, 106
bzip2recover: 105, 106
bzless: 105, 106
bzmore: 105, 106
c++: 137, 141
c++filt: 121, 122

cal: 224, 225
capsh: 130, 130
captoinfo: 143, 144
cat: 182, 183
catman: 219, 221
cc: 137, 141
cfdisk: 224, 225
chacl: 129, 129
chage: 133, 135
chattr: 229, 230
chcon: 182, 183
chcpu: 224, 225
checkmk: 187, 187
chem: 191, 191
chfn: 133, 135
chgpasswd: 133, 135
chgrp: 182, 183
chmem: 224, 225
chmod: 182, 183
choom: 224, 225
chown: 182, 183
chpasswd: 133, 135
chroot: 182, 183
chrt: 224, 225
chsh: 133, 135
chvt: 199, 200
cksum: 182, 183
clear: 143, 144
cmp: 188, 188
col: 224, 225
colcrt: 224, 225
colrm: 224, 225
column: 224, 225
comm: 182, 183
compile_et: 229, 230
coredumpctl: 212, 214
corelist: 161, 162
cp: 182, 183
cpan: 161, 162
cpp: 137, 141
csplit: 182, 184
ctrlaltdel: 224, 225
ctstat: 197, 197
cut: 182, 184
c_rehash: 169, 170
date: 182, 184
dbus-cleanup-sockets: 217, 218

296

Linux From Scratch - Version 12.0-systemd

dbus-daemon: 217, 218
dbus-launch: 217, 218
dbus-monitor: 217, 218
dbus-run-session: 217, 218
dbus-send: 217, 218
dbus-test-tool: 217, 218
dbus-update-activation-environment: 217, 218
dbus-uuidgen: 217, 218
dc: 114, 114
dd: 182, 184
deallocvt: 199, 200
debugfs: 229, 230
dejagnu: 120, 120
delpart: 224, 225
depmod: 171, 171
df: 182, 184
diff: 188, 188
diff3: 188, 188
dir: 182, 184
dircolors: 182, 184
dirname: 182, 184
dmesg: 224, 226
dnsdomainname: 158, 159
du: 182, 184
dumpe2fs: 229, 230
dumpkeys: 199, 200
e2freefrag: 229, 230
e2fsck: 229, 230
e2image: 229, 230
e2label: 229, 230
e2mmpstatus: 229, 230
e2scrub: 229, 230
e2scrub_all: 229, 230
e2undo: 229, 230
e4crypt: 229, 230
e4defrag: 229, 230
echo: 182, 184
egrep: 151, 151
eject: 224, 226
elfedit: 121, 122
enc2xs: 161, 162
encguess: 161, 162
env: 182, 184
envsubst: 148, 148
eqn: 191, 191
eqn2graph: 191, 191
ex: 207, 209

expand: 182, 184
expect: 118, 118
expiry: 133, 135
expr: 182, 184
factor: 182, 184
faillog: 133, 135
fallocate: 224, 226
false: 182, 184
fdisk: 224, 226
fgconsole: 199, 200
fgrep: 151, 151
file: 110, 110
filefrag: 229, 230
fincore: 224, 226
find: 190, 190
findfs: 224, 226
findmnt: 224, 226
flex: 115, 115
flex++: 115, 115
flock: 224, 226
fmt: 182, 184
fold: 182, 184
free: 222, 222
fsck: 224, 226
fsck.cramfs: 224, 226
fsck.ext2: 229, 230
fsck.ext3: 229, 230
fsck.ext4: 229, 230
fsck.minix: 224, 226
fsfreeze: 224, 226
fstrim: 224, 226
ftp: 158, 159
fuser: 147, 147
g++: 137, 141
gawk: 189, 189
gawk-5.2.2: 189, 189
gcc: 137, 141
gc-ar: 137, 141
gc-nm: 137, 141
gc-ranlib: 137, 141
gcov: 137, 141
gcov-dump: 137, 141
gcov-tool: 137, 141
gdbmtool: 155, 155
gdbm_dump: 155, 155
gdbm_load: 155, 155
gdiffmk: 191, 191

297

Linux From Scratch - Version 12.0-systemd

gencat: 97, 102
genl: 197, 197
getcap: 130, 130
getconf: 97, 102
getent: 97, 102
getfacl: 129, 129
getfattr: 128, 128
getkeycodes: 199, 200
getopt: 224, 226
getpcaps: 130, 130
getsubids: 133, 135
gettext: 148, 148
gettext.sh: 148, 148
gettextize: 148, 148
glilypond: 191, 191
gpasswd: 133, 135
gperf: 156, 156
gperl: 191, 191
gpinyin: 191, 191
gprof: 121, 122
gprofng: 121, 122
grap2graph: 191, 192
grep: 151, 151
grn: 191, 192
grodvi: 191, 192
groff: 191, 192
groffer: 191, 192
grog: 191, 192
grolbp: 191, 192
grolj4: 191, 192
gropdf: 191, 192
grops: 191, 192
grotty: 191, 192
groupadd: 133, 135
groupdel: 133, 135
groupmems: 133, 135
groupmod: 133, 135
groups: 182, 184
grpck: 133, 135
grpconv: 133, 135
grpunconv: 133, 135
grub-bios-setup: 194, 195
grub-editenv: 194, 195
grub-file: 194, 195
grub-fstest: 194, 195
grub-glue-efi: 194, 195
grub-install: 194, 195

grub-kbdcomp: 194, 195
grub-macbless: 194, 195
grub-menulst2cfg: 194, 195
grub-mkconfig: 194, 195
grub-mkimage: 194, 195
grub-mklayout: 194, 195
grub-mknetdir: 194, 195
grub-mkpasswd-pbkdf2: 194, 195
grub-mkrelpath: 194, 195
grub-mkrescue: 194, 195
grub-mkstandalone: 194, 195
grub-ofpathname: 194, 195
grub-probe: 194, 195
grub-reboot: 194, 195
grub-render-label: 194, 195
grub-script-check: 194, 195
grub-set-default: 194, 195
grub-setup: 194, 195
grub-syslinux2cfg: 194, 195
gunzip: 196, 196
gzexe: 196, 196
gzip: 196, 196
h2ph: 161, 162
h2xs: 161, 162
halt: 212, 214
hardlink: 224, 226
head: 182, 184
hexdump: 224, 226
hostid: 182, 184
hostname: 158, 159
hostnamectl: 212, 214
hpftodit: 191, 192
hwclock: 224, 226
i386: 224, 226
iconv: 97, 102
iconvconfig: 97, 102
id: 182, 184
idle3: 175
ifconfig: 158, 159
ifnames: 166, 167
ifstat: 197, 197
indxbib: 191, 192
info: 205, 205
infocmp: 143, 144
infotocap: 143, 144
init: 212, 214
insmod: 171, 171

298

Linux From Scratch - Version 12.0-systemd

install: 182, 184
install-info: 205, 206
instmodsh: 161, 162
intltool-extract: 165, 165
intltool-merge: 165, 165
intltool-prepare: 165, 165
intltool-update: 165, 165
intltoolize: 165, 165
ionice: 224, 226
ip: 197, 197
ipcmk: 224, 226
ipcrm: 224, 226
ipcs: 224, 226
irqtop: 224, 226
isosize: 224, 226
join: 182, 184
journalctl: 212, 214
json_pp: 161, 162
kbdinfo: 199, 200
kbdrate: 199, 200
kbd_mode: 199, 200
kernel-install: 212, 214
kill: 224, 226
killall: 147, 147
kmod: 171, 171
last: 224, 226
lastb: 224, 226
lastlog: 133, 135
ld: 121, 122
ld.bfd: 121, 122
ld.gold: 121, 122
ldattach: 224, 226
ldconfig: 97, 102
ldd: 97, 102
lddlibc4: 97, 102
less: 160, 160
lessecho: 160, 160
lesskey: 160, 160
lex: 115, 115
lexgrog: 219, 221
lfskernel-6.4.12: 254, 259
libasan: 137, 141
libatomic: 137, 141
libcc1: 137, 141
libnetcfg: 161, 162
libtool: 154, 154
libtoolize: 154, 154

link: 182, 184
linux32: 224, 226
linux64: 224, 226
lkbib: 191, 192
ln: 182, 184
lnstat: 197, 198
loadkeys: 199, 200
loadunimap: 199, 200
locale: 97, 102
localectl: 212, 214
localedef: 97, 102
locate: 190, 190
logger: 224, 226
login: 133, 135
loginctl: 212, 214
logname: 182, 184
logoutd: 133, 136
logsave: 229, 231
look: 224, 226
lookbib: 191, 192
losetup: 224, 226
ls: 182, 184
lsattr: 229, 231
lsblk: 224, 226
lscpu: 224, 227
lsfd: 224, 227
lsipc: 224, 227
lsirq: 224, 227
lslocks: 224, 227
lslogins: 224, 227
lsmem: 224, 227
lsmod: 171, 172
lsns: 224, 227
lto-dump: 137, 141
lzcat: 107, 107
lzcmp: 107, 107
lzdiff: 107, 107
lzegrep: 107, 107
lzfgrep: 107, 107
lzgrep: 107, 107
lzless: 107, 107
lzma: 107, 107
lzmadec: 107, 107
lzmainfo: 107, 107
lzmore: 107, 108
m4: 113, 113
machinectl: 212, 214

299

Linux From Scratch - Version 12.0-systemd

make: 202, 202
makedb: 97, 102
makeinfo: 205, 206
man: 219, 221
man-recode: 219, 221
mandb: 219, 221
manpath: 219, 221
mapscrn: 199, 200
mcookie: 224, 227
md5sum: 182, 184
mesg: 224, 227
meson: 181, 181
mkdir: 182, 184
mke2fs: 229, 231
mkfifo: 182, 184
mkfs: 224, 227
mkfs.bfs: 224, 227
mkfs.cramfs: 224, 227
mkfs.ext2: 229, 231
mkfs.ext3: 229, 231
mkfs.ext4: 229, 231
mkfs.minix: 224, 227
mklost+found: 229, 231
mknod: 182, 184
mkswap: 224, 227
mktemp: 182, 184
mk_cmds: 229, 231
mmroff: 191, 192
modinfo: 171, 172
modprobe: 171, 172
more: 224, 227
mount: 224, 227
mountpoint: 224, 227
msgattrib: 148, 148
msgcat: 148, 148
msgcmp: 148, 148
msgcomm: 148, 149
msgconv: 148, 149
msgen: 148, 149
msgexec: 148, 149
msgfilter: 148, 149
msgfmt: 148, 149
msggrep: 148, 149
msginit: 148, 149
msgmerge: 148, 149
msgunfmt: 148, 149
msguniq: 148, 149

mtrace: 97, 102
mv: 182, 184
namei: 224, 227
ncursesw6-config: 143, 144
neqn: 191, 192
networkctl: 212, 214
newgidmap: 133, 136
newgrp: 133, 136
newuidmap: 133, 136
newusers: 133, 136
ngettext: 148, 149
nice: 182, 185
ninja: 180, 180
nl: 182, 185
nm: 121, 122
nohup: 182, 185
nologin: 133, 136
nproc: 182, 185
nroff: 191, 192
nscd: 97, 102
nsenter: 224, 227
nstat: 197, 198
numfmt: 182, 185
objcopy: 121, 123
objdump: 121, 123
od: 182, 185
oomctl: 212, 215
openssl: 169, 170
openvt: 199, 200
partx: 224, 227
passwd: 133, 136
paste: 182, 185
patch: 203, 203
pathchk: 182, 185
pcprofiledump: 97, 102
pdfmom: 191, 192
pdfroff: 191, 192
pdftexi2dvi: 205, 206
peekfd: 147, 147
perl: 161, 162
perl5.38.0: 161, 162
perlbug: 161, 162
perldoc: 161, 162
perlivp: 161, 162
perlthanks: 161, 162
pfbtops: 191, 192
pgrep: 222, 222

300

Linux From Scratch - Version 12.0-systemd

pic: 191, 192
pic2graph: 191, 192
piconv: 161, 162
pidof: 222, 222
ping: 158, 159
ping6: 158, 159
pinky: 182, 185
pip3: 175
pivot_root: 224, 227
pkgconf: 142, 142
pkill: 222, 222
pl2pm: 161, 162
pldd: 97, 102
pmap: 222, 222
pod2html: 161, 162
pod2man: 161, 162
pod2texi: 205, 206
pod2text: 161, 163
pod2usage: 161, 163
podchecker: 161, 163
podselect: 161, 163
portablectl: 212, 215
post-grohtml: 191, 192
poweroff: 212, 215
pr: 182, 185
pre-grohtml: 191, 192
preconv: 191, 192
printenv: 182, 185
printf: 182, 185
prlimit: 224, 227
prove: 161, 163
prtstat: 147, 147
ps: 222, 222
psfaddtable: 199, 200
psfgettable: 199, 200
psfstriptable: 199, 200
psfxtable: 199, 200
pslog: 147, 147
pstree: 147, 147
pstree.x11: 147, 147
ptar: 161, 163
ptardiff: 161, 163
ptargrep: 161, 163
ptx: 182, 185
pwck: 133, 136
pwconv: 133, 136
pwd: 182, 185

pwdx: 222, 222
pwunconv: 133, 136
pydoc3: 175
python3: 175
ranlib: 121, 123
readelf: 121, 123
readlink: 182, 185
readprofile: 224, 227
realpath: 182, 185
reboot: 212, 215
recode-sr-latin: 148, 149
refer: 191, 192
rename: 224, 227
renice: 224, 227
reset: 143, 144
resize2fs: 229, 231
resizepart: 224, 227
resolvconf: 212, 215
resolvectl: 212, 215
rev: 224, 227
rfkill: 224, 227
rm: 182, 185
rmdir: 182, 185
rmmod: 171, 172
roff2dvi: 191, 193
roff2html: 191, 193
roff2pdf: 191, 193
roff2ps: 191, 193
roff2text: 191, 193
roff2x: 191, 193
routel: 197, 198
rtacct: 197, 198
rtcwake: 224, 227
rtmon: 197, 198
rtpr: 197, 198
rtstat: 197, 198
runcon: 182, 185
runlevel: 212, 215
runtest: 120, 120
rview: 207, 209
rvim: 207, 209
script: 224, 227
scriptlive: 224, 227
scriptreplay: 224, 227
sdiff: 188, 188
sed: 146, 146
seq: 182, 185

301

Linux From Scratch - Version 12.0-systemd

setarch: 224, 227
setcap: 130, 130
setfacl: 129, 129
setfattr: 128, 128
setfont: 199, 200
setkeycodes: 199, 200
setleds: 199, 200
setmetamode: 199, 200
setsid: 224, 227
setterm: 224, 227
setvtrgb: 199, 200
sfdisk: 224, 228
sg: 133, 136
sh: 152, 153
sha1sum: 182, 185
sha224sum: 182, 185
sha256sum: 182, 185
sha384sum: 182, 185
sha512sum: 182, 185
shasum: 161, 163
showconsolefont: 199, 200
showkey: 199, 200
shred: 182, 185
shuf: 182, 185
shutdown: 212, 215
size: 121, 123
slabtop: 222, 222
sleep: 182, 185
sln: 97, 102
soelim: 191, 193
sort: 182, 185
sotruss: 97, 102
splain: 161, 163
split: 182, 185
sprof: 97, 102
ss: 197, 198
stat: 182, 185
stdbuf: 182, 185
strings: 121, 123
strip: 121, 123
stty: 182, 185
su: 133, 136
sulogin: 224, 228
sum: 182, 185
swaplabel: 224, 228
swapoff: 224, 228
swapon: 224, 228

switch_root: 224, 228
sync: 182, 185
sysctl: 222, 222
systemctl: 212, 215
systemd-ac-power: 212, 215
systemd-analyze: 212, 215
systemd-ask-password: 212, 215
systemd-cat: 212, 215
systemd-cgls: 212, 215
systemd-cgtop: 212, 215
systemd-creds: 212, 215
systemd-delta: 212, 215
systemd-detect-virt: 212, 215
systemd-dissect: 212, 215
systemd-escape: 212, 215
systemd-hwdb: 212, 215
systemd-id128: 212, 215
systemd-inhibit: 212, 215
systemd-machine-id-setup: 212, 215
systemd-mount: 212, 216
systemd-notify: 212, 216
systemd-nspawn: 212, 216
systemd-path: 212, 216
systemd-repart: 212, 216
systemd-resolve: 212, 216
systemd-run: 212, 216
systemd-socket-activate: 212, 216
systemd-sysext: 212, 216
systemd-tmpfiles: 212, 216
systemd-tty-ask-password-agent: 212, 216
systemd-umount: 212, 216
tabs: 143, 145
tac: 182, 185
tail: 182, 186
talk: 158, 159
tar: 204, 204
taskset: 224, 228
tbl: 191, 193
tc: 197, 198
tclsh: 116, 117
tclsh8.6: 116, 117
tee: 182, 186
telinit: 212, 216
telnet: 158, 159
test: 182, 186
texi2dvi: 205, 206
texi2pdf: 205, 206

302

Linux From Scratch - Version 12.0-systemd

texi2any: 205, 206
texindex: 205, 206
tfmtodit: 191, 193
tftp: 158, 159
tic: 143, 145
timedatectl: 212, 216
timeout: 182, 186
tload: 222, 223
toe: 143, 145
top: 222, 223
touch: 182, 186
tput: 143, 145
tr: 182, 186
traceroute: 158, 159
troff: 191, 193
true: 182, 186
truncate: 182, 186
tset: 143, 145
tsort: 182, 186
tty: 182, 186
tune2fs: 229, 231
tzselect: 97, 102
uclampset: 224, 228
udevadm: 212, 216
ul: 224, 228
umount: 224, 228
uname: 182, 186
uname26: 224, 228
uncompress: 196, 196
unexpand: 182, 186
unicode_start: 199, 200
unicode_stop: 199, 200
uniq: 182, 186
unlink: 182, 186
unlzma: 107, 108
unshare: 224, 228
unxz: 107, 108
updatedb: 190, 190
uptime: 222, 223
useradd: 133, 136
userdel: 133, 136
usermod: 133, 136
users: 182, 186
utmpdump: 224, 228
uuidd: 224, 228
uuidgen: 224, 228
uuidparse: 224, 228

vdir: 182, 186
vi: 207, 209
view: 207, 209
vigr: 133, 136
vim: 207, 209
vimdiff: 207, 209
vimtutor: 207, 209
vipw: 133, 136
vmstat: 222, 223
w: 222, 223
wall: 224, 228
watch: 222, 223
wc: 182, 186
wdctl: 224, 228
whatis: 219, 221
wheel: 179
whereis: 224, 228
who: 182, 186
whoami: 182, 186
wipefs: 224, 228
x86_64: 224, 228
xargs: 190, 190
xgettext: 148, 149
xmlwf: 157, 157
xsubpp: 161, 163
xtrace: 97, 102
xxd: 207, 209
xz: 107, 108
xzcat: 107, 108
xzcmp: 107, 108
xzdec: 107, 108
xzdiff: 107, 108
xzegrep: 107, 108
xzfgrep: 107, 108
xzgrep: 107, 108
xzless: 107, 108
xzmore: 107, 108
yacc: 150, 150
yes: 182, 186
zcat: 196, 196
zcmp: 196, 196
zdiff: 196, 196
zdump: 97, 102
zegrep: 196, 196
zfgrep: 196, 196
zforce: 196, 196
zgrep: 196, 196

303

Linux From Scratch - Version 12.0-systemd

zic: 97, 102
zipdetails: 161, 163
zless: 196, 196
zmore: 196, 196
znew: 196, 196
zramctl: 224, 228
zstd: 109, 109
zstdgrep: 109, 109
zstdless: 109, 109

Libraries
Expat: 164, 164
ld-2.38.so: 97, 103
libacl: 129, 129
libanl: 97, 103
libasprintf: 148, 149
libattr: 128, 128
libbfd: 121, 123
libblkid: 224, 228
libBrokenLocale: 97, 103
libbz2: 105, 106
libc: 97, 103
libcap: 130, 130
libcheck: 187, 187
libcom_err: 229, 231
libcrypt: 131, 132
libcrypto.so: 169, 170
libctf: 121, 123
libctf-nobfd: 121, 123
libcursesw: 143, 145
libc_malloc_debug: 97, 103
libdbus-1: 217, 218
libdl: 97, 103
libe2p: 229, 231
libelf: 173, 173
libexpat: 157, 157
libexpect-5.45.4: 118, 119
libext2fs: 229, 231
libfdisk: 224, 228
libffi: 174
libfl: 115, 115
libformw: 143, 145
libg: 97, 103
libgcc: 137, 141
libgcov: 137, 141
libgdbm: 155, 155
libgdbm_compat: 155, 155

libgettextlib: 148, 149
libgettextpo: 148, 149
libgettextsrc: 148, 149
libgmp: 124, 125
libgmpxx: 124, 125
libgomp: 137, 141
libgprofng: 121, 123
libhistory: 111, 111
libhwasan: 137, 141
libitm: 137, 141
libkmod: 171
liblsan: 137, 141
libltdl: 154, 154
liblto_plugin: 137, 141
liblzma: 107, 108
libm: 97, 103
libmagic: 110, 110
libman: 219, 221
libmandb: 219, 221
libmcheck: 97, 103
libmemusage: 97, 103
libmenuw: 143, 145
libmount: 224, 228
libmpc: 127, 127
libmpfr: 126, 126
libmvec: 97, 103
libncurses++w: 143, 145
libncursesw: 143, 145
libnsl: 97, 103
libnss_*: 97, 103
libopcodes: 121, 123
libpanelw: 143, 145
libpcprofile: 97, 103
libpipeline: 201
libpkgconf: 142, 142
libproc-2: 222, 223
libpsx: 130, 130
libpthread: 97, 103
libquadmath: 137, 141
libreadline: 111, 112
libresolv: 97, 103
librt: 97, 103
libsframe: 121, 123
libsmartcols: 224, 228
libss: 229, 231
libssl.so: 169, 170
libssp: 137, 141

304

Linux From Scratch - Version 12.0-systemd

libstdbuf: 182, 186
libstdc++: 137, 141
libstdc++exp: 137, 141
libstdc++fs: 137, 141
libsubid: 133, 136
libsupc++: 137, 141
libsystemd: 212, 216
libtcl8.6.so: 116, 117
libtclstub8.6.a: 116, 117
libtextstyle: 148, 149
libthread_db: 97, 103
libtsan: 137, 141
libubsan: 137, 141
libudev: 212, 216
libutil: 97, 103
libuuid: 224, 228
liby: 150, 150
libz: 104, 104
libzstd: 109, 109
preloadable_libintl: 148, 149

Scripts

clock
configuring: 242

console
configuring: 244

hostname
configuring: 238

localnet
/etc/hosts: 238

network
/etc/hosts: 238
configuring: 235

network
/etc/hosts: 238
configuring: 235

dwp: 121, 122

Others

/boot/config-6.4.12: 254, 259
/boot/System.map-6.4.12: 254, 259
/dev/*: 75
/etc/fstab: 252
/etc/group: 78
/etc/hosts: 238
/etc/inputrc: 246

/etc/ld.so.conf: 101
/etc/lfs-release: 263
/etc/localtime: 100
/etc/lsb-release: 263
/etc/mke2fs.conf: 230
/etc/modprobe.d/usb.conf: 259
/etc/nsswitch.conf: 100
/etc/os-release: 263
/etc/passwd: 78
/etc/protocols: 96
/etc/resolv.conf: 237
/etc/services: 96
/etc/vimrc: 208
/run/utmp: 78
/usr/include/asm-generic/*.h: 49, 49
/usr/include/asm/*.h: 49, 49
/usr/include/drm/*.h: 49, 49
/usr/include/linux/*.h: 49, 49
/usr/include/misc/*.h: 49, 49
/usr/include/mtd/*.h: 49, 49
/usr/include/rdma/*.h: 49, 49
/usr/include/scsi/*.h: 49, 49
/usr/include/sound/*.h: 49, 49
/usr/include/video/*.h: 49, 49
/usr/include/xen/*.h: 49, 49
/var/log/btmp: 78
/var/log/lastlog: 78
/var/log/wtmp: 78
/etc/locale.conf: 245
/etc/shells: 247
man pages: 95, 95
Systemd Customization: 248

305

	Linux From Scratch
	Table of Contents
	Preface
	Foreword
	Audience
	LFS Target Architectures
	Prerequisites
	LFS and Standards
	Rationale for Packages in the Book
	Typography
	Structure
	Part I - Introduction
	Part II - Preparing for the Build
	Part III - Building the LFS Cross Toolchain and Temporary Tools
	Part IV - Building the LFS System
	Part V - Appendices

	Errata and Security Advisories

	Part I. Introduction
	Chapter 1. Introduction
	1.1. How to Build an LFS System
	1.2. What's new since the last release
	1.3. Changelog
	1.4. Resources
	1.4.1. FAQ
	1.4.2. Mailing Lists
	1.4.3. IRC
	1.4.4. Mirror Sites
	1.4.5. Contact Information

	1.5. Help
	1.5.1. Things to Mention
	1.5.2. Configure Script Problems
	1.5.3. Compilation Problems

	Part II. Preparing for the Build
	Chapter 2. Preparing the Host System
	2.1. Introduction
	2.2. Host System Requirements
	2.2.1. Hardware
	2.2.2. Software

	2.3. Building LFS in Stages
	2.3.1. Chapters 1–4
	2.3.2. Chapters 5–6
	2.3.3. Chapters 7–10

	2.4. Creating a New Partition
	2.4.1. Other Partition Issues
	2.4.1.1. The Root Partition
	2.4.1.2. The Swap Partition
	2.4.1.3. The Grub Bios Partition
	2.4.1.4. Convenience Partitions

	2.5. Creating a File System on the Partition
	2.6. Setting The $LFS Variable
	2.7. Mounting the New Partition

	Chapter 3. Packages and Patches
	3.1. Introduction
	3.2. All Packages
	3.3. Needed Patches

	Chapter 4. Final Preparations
	4.1. Introduction
	4.2. Creating a Limited Directory Layout in the LFS Filesystem
	4.3. Adding the LFS User
	4.4. Setting Up the Environment
	4.5. About SBUs
	4.6. About the Test Suites

	Part III. Building the LFS Cross Toolchain and Temporary Tools
	Important Preliminary Material
	Introduction
	Toolchain Technical Notes
	About Cross-Compilation
	Implementation of Cross-Compilation for LFS
	Other Procedural Details

	General Compilation Instructions

	Chapter 5. Compiling a Cross-Toolchain
	5.1. Introduction
	5.2. Binutils-2.41 - Pass 1
	5.2.0.
	5.2.1. Installation of Cross Binutils
	5.2.2.

	5.3. GCC-13.2.0 - Pass 1
	5.3.0.
	5.3.1. Installation of Cross GCC
	5.3.2.

	5.4. Linux-6.4.12 API Headers
	5.4.0.
	5.4.1. Installation of Linux API Headers
	5.4.2. Contents of Linux API Headers

	5.5. Glibc-2.38
	5.5.0.
	5.5.1. Installation of Glibc
	5.5.2.

	5.6. Libstdc++ from GCC-13.2.0
	5.6.0.
	5.6.1. Installation of Target Libstdc++
	5.6.2.

	Chapter 6. Cross Compiling Temporary Tools
	6.1. Introduction
	6.2. M4-1.4.19
	6.2.0.
	6.2.1. Installation of M4
	6.2.2.

	6.3. Ncurses-6.4
	6.3.0.
	6.3.1. Installation of Ncurses
	6.3.2.

	6.4. Bash-5.2.15
	6.4.0.
	6.4.1. Installation of Bash
	6.4.2.

	6.5. Coreutils-9.3
	6.5.0.
	6.5.1. Installation of Coreutils
	6.5.2.

	6.6. Diffutils-3.10
	6.6.0.
	6.6.1. Installation of Diffutils
	6.6.2.

	6.7. File-5.45
	6.7.0.
	6.7.1. Installation of File
	6.7.2.

	6.8. Findutils-4.9.0
	6.8.0.
	6.8.1. Installation of Findutils
	6.8.2.

	6.9. Gawk-5.2.2
	6.9.0.
	6.9.1. Installation of Gawk
	6.9.2.

	6.10. Grep-3.11
	6.10.0.
	6.10.1. Installation of Grep
	6.10.2.

	6.11. Gzip-1.12
	6.11.0.
	6.11.1. Installation of Gzip
	6.11.2.

	6.12. Make-4.4.1
	6.12.0.
	6.12.1. Installation of Make
	6.12.2.

	6.13. Patch-2.7.6
	6.13.0.
	6.13.1. Installation of Patch
	6.13.2.

	6.14. Sed-4.9
	6.14.0.
	6.14.1. Installation of Sed
	6.14.2.

	6.15. Tar-1.35
	6.15.0.
	6.15.1. Installation of Tar
	6.15.2.

	6.16. Xz-5.4.4
	6.16.0.
	6.16.1. Installation of Xz
	6.16.2.

	6.17. Binutils-2.41 - Pass 2
	6.17.0.
	6.17.1. Installation of Binutils
	6.17.2.

	6.18. GCC-13.2.0 - Pass 2
	6.18.0.
	6.18.1. Installation of GCC
	6.18.2.

	Chapter 7. Entering Chroot and Building Additional Temporary Tools
	7.1. Introduction
	7.2. Changing Ownership
	7.3. Preparing Virtual Kernel File Systems
	7.3.1. Mounting and Populating /dev
	7.3.2. Mounting Virtual Kernel File Systems

	7.4. Entering the Chroot Environment
	7.5. Creating Directories
	7.5.1. FHS Compliance Note

	7.6. Creating Essential Files and Symlinks
	7.7. Gettext-0.22
	7.7.0.
	7.7.1. Installation of Gettext
	7.7.2.

	7.8. Bison-3.8.2
	7.8.0.
	7.8.1. Installation of Bison
	7.8.2.

	7.9. Perl-5.38.0
	7.9.0.
	7.9.1. Installation of Perl
	7.9.2.

	7.10. Python-3.11.4
	7.10.0.
	7.10.1. Installation of Python
	7.10.2.

	7.11. Texinfo-7.0.3
	7.11.0.
	7.11.1. Installation of Texinfo
	7.11.2.

	7.12. Util-linux-2.39.1
	7.12.0.
	7.12.1. Installation of Util-linux
	7.12.2.

	7.13. Cleaning up and Saving the Temporary System
	7.13.1. Cleaning
	7.13.2. Backup
	7.13.3. Restore

	Part IV. Building the LFS System
	Chapter 8. Installing Basic System Software
	8.1. Introduction
	8.1.1. About Libraries

	8.2. Package Management
	8.2.1. Upgrade Issues
	8.2.2. Package Management Techniques
	8.2.2.1. It is All in My Head!
	8.2.2.2. Install in Separate Directories
	8.2.2.3. Symlink Style Package Management
	8.2.2.4. Timestamp Based
	8.2.2.5. Tracing Installation Scripts
	8.2.2.6. Creating Package Archives
	8.2.2.7. User Based Management

	8.2.3. Deploying LFS on Multiple Systems

	8.3. Man-pages-6.05.01
	8.3.0.
	8.3.1. Installation of Man-pages
	8.3.2. Contents of Man-pages

	8.4. Iana-Etc-20230810
	8.4.0.
	8.4.1. Installation of Iana-Etc
	8.4.2. Contents of Iana-Etc

	8.5. Glibc-2.38
	8.5.0.
	8.5.1. Installation of Glibc
	8.5.2. Configuring Glibc
	8.5.2.1. Adding nsswitch.conf
	8.5.2.2. Adding Time Zone Data
	8.5.2.3. Configuring the Dynamic Loader

	8.5.3. Contents of Glibc

	8.6. Zlib-1.2.13
	8.6.0.
	8.6.1. Installation of Zlib
	8.6.2. Contents of Zlib

	8.7. Bzip2-1.0.8
	8.7.0.
	8.7.1. Installation of Bzip2
	8.7.2. Contents of Bzip2

	8.8. Xz-5.4.4
	8.8.0.
	8.8.1. Installation of Xz
	8.8.2. Contents of Xz

	8.9. Zstd-1.5.5
	8.9.0.
	8.9.1. Installation of Zstd
	8.9.2. Contents of Zstd

	8.10. File-5.45
	8.10.0.
	8.10.1. Installation of File
	8.10.2. Contents of File

	8.11. Readline-8.2
	8.11.0.
	8.11.1. Installation of Readline
	8.11.2. Contents of Readline

	8.12. M4-1.4.19
	8.12.0.
	8.12.1. Installation of M4
	8.12.2. Contents of M4

	8.13. Bc-6.6.0
	8.13.0.
	8.13.1. Installation of Bc
	8.13.2. Contents of Bc

	8.14. Flex-2.6.4
	8.14.0.
	8.14.1. Installation of Flex
	8.14.2. Contents of Flex

	8.15. Tcl-8.6.13
	8.15.0.
	8.15.1. Installation of Tcl
	8.15.2. Contents of Tcl

	8.16. Expect-5.45.4
	8.16.0.
	8.16.1. Installation of Expect
	8.16.2. Contents of Expect

	8.17. DejaGNU-1.6.3
	8.17.0.
	8.17.1. Installation of DejaGNU
	8.17.2. Contents of DejaGNU

	8.18. Binutils-2.41
	8.18.0.
	8.18.1. Installation of Binutils
	8.18.2. Contents of Binutils

	8.19. GMP-6.3.0
	8.19.0.
	8.19.1. Installation of GMP
	8.19.2. Contents of GMP

	8.20. MPFR-4.2.0
	8.20.0.
	8.20.1. Installation of MPFR
	8.20.2. Contents of MPFR

	8.21. MPC-1.3.1
	8.21.0.
	8.21.1. Installation of MPC
	8.21.2. Contents of MPC

	8.22. Attr-2.5.1
	8.22.0.
	8.22.1. Installation of Attr
	8.22.2. Contents of Attr

	8.23. Acl-2.3.1
	8.23.0.
	8.23.1. Installation of Acl
	8.23.2. Contents of Acl

	8.24. Libcap-2.69
	8.24.0.
	8.24.1. Installation of Libcap
	8.24.2. Contents of Libcap

	8.25. Libxcrypt-4.4.36
	8.25.0.
	8.25.1. Installation of Libxcrypt
	8.25.2. Contents of Libxcrypt

	8.26. Shadow-4.13
	8.26.0.
	8.26.1. Installation of Shadow
	8.26.2. Configuring Shadow
	8.26.3. Setting the Root Password
	8.26.4. Contents of Shadow

	8.27. GCC-13.2.0
	8.27.0.
	8.27.1. Installation of GCC
	8.27.2. Contents of GCC

	8.28. Pkgconf-2.0.1
	8.28.0.
	8.28.1. Installation of Pkgconf
	8.28.2. Contents of Pkgconf

	8.29. Ncurses-6.4
	8.29.0.
	8.29.1. Installation of Ncurses
	8.29.2. Contents of Ncurses

	8.30. Sed-4.9
	8.30.0.
	8.30.1. Installation of Sed
	8.30.2. Contents of Sed

	8.31. Psmisc-23.6
	8.31.0.
	8.31.1. Installation of Psmisc
	8.31.2. Contents of Psmisc

	8.32. Gettext-0.22
	8.32.0.
	8.32.1. Installation of Gettext
	8.32.2. Contents of Gettext

	8.33. Bison-3.8.2
	8.33.0.
	8.33.1. Installation of Bison
	8.33.2. Contents of Bison

	8.34. Grep-3.11
	8.34.0.
	8.34.1. Installation of Grep
	8.34.2. Contents of Grep

	8.35. Bash-5.2.15
	8.35.0.
	8.35.1. Installation of Bash
	8.35.2. Contents of Bash

	8.36. Libtool-2.4.7
	8.36.0.
	8.36.1. Installation of Libtool
	8.36.2. Contents of Libtool

	8.37. GDBM-1.23
	8.37.0.
	8.37.1. Installation of GDBM
	8.37.2. Contents of GDBM

	8.38. Gperf-3.1
	8.38.0.
	8.38.1. Installation of Gperf
	8.38.2. Contents of Gperf

	8.39. Expat-2.5.0
	8.39.0.
	8.39.1. Installation of Expat
	8.39.2. Contents of Expat

	8.40. Inetutils-2.4
	8.40.0.
	8.40.1. Installation of Inetutils
	8.40.2. Contents of Inetutils

	8.41. Less-643
	8.41.0.
	8.41.1. Installation of Less
	8.41.2. Contents of Less

	8.42. Perl-5.38.0
	8.42.0.
	8.42.1. Installation of Perl
	8.42.2. Contents of Perl

	8.43. XML::Parser-2.46
	8.43.0.
	8.43.1. Installation of XML::Parser
	8.43.2. Contents of XML::Parser

	8.44. Intltool-0.51.0
	8.44.0.
	8.44.1. Installation of Intltool
	8.44.2. Contents of Intltool

	8.45. Autoconf-2.71
	8.45.0.
	8.45.1. Installation of Autoconf
	8.45.2. Contents of Autoconf

	8.46. Automake-1.16.5
	8.46.0.
	8.46.1. Installation of Automake
	8.46.2. Contents of Automake

	8.47. OpenSSL-3.1.2
	8.47.0.
	8.47.1. Installation of OpenSSL
	8.47.2. Contents of OpenSSL

	8.48. Kmod-30
	8.48.0.
	8.48.1. Installation of Kmod
	8.48.2. Contents of Kmod

	8.49. Libelf from Elfutils-0.189
	8.49.0.
	8.49.1. Installation of Libelf
	8.49.2. Contents of Libelf

	8.50. Libffi-3.4.4
	8.50.0.
	8.50.1. Installation of Libffi
	8.50.2. Contents of Libffi

	8.51. Python-3.11.4
	8.51.0.
	8.51.1. Installation of Python 3
	8.51.2. Contents of Python 3

	8.52. Flit-Core-3.9.0
	8.52.0.
	8.52.1. Installation of Flit-Core
	8.52.2. Contents of Flit-Core

	8.53. Wheel-0.41.1
	8.53.0.
	8.53.1. Installation of Wheel
	8.53.2. Contents of Wheel

	8.54. Ninja-1.11.1
	8.54.0.
	8.54.1. Installation of Ninja
	8.54.2. Contents of Ninja

	8.55. Meson-1.2.1
	8.55.0.
	8.55.1. Installation of Meson
	8.55.2. Contents of Meson

	8.56. Coreutils-9.3
	8.56.0.
	8.56.1. Installation of Coreutils
	8.56.2. Contents of Coreutils

	8.57. Check-0.15.2
	8.57.0.
	8.57.1. Installation of Check
	8.57.2. Contents of Check

	8.58. Diffutils-3.10
	8.58.0.
	8.58.1. Installation of Diffutils
	8.58.2. Contents of Diffutils

	8.59. Gawk-5.2.2
	8.59.0.
	8.59.1. Installation of Gawk
	8.59.2. Contents of Gawk

	8.60. Findutils-4.9.0
	8.60.0.
	8.60.1. Installation of Findutils
	8.60.2. Contents of Findutils

	8.61. Groff-1.23.0
	8.61.0.
	8.61.1. Installation of Groff
	8.61.2. Contents of Groff

	8.62. GRUB-2.06
	8.62.0.
	8.62.1. Installation of GRUB
	8.62.2. Contents of GRUB

	8.63. Gzip-1.12
	8.63.0.
	8.63.1. Installation of Gzip
	8.63.2. Contents of Gzip

	8.64. IPRoute2-6.4.0
	8.64.0.
	8.64.1. Installation of IPRoute2
	8.64.2. Contents of IPRoute2

	8.65. Kbd-2.6.1
	8.65.0.
	8.65.1. Installation of Kbd
	8.65.2. Contents of Kbd

	8.66. Libpipeline-1.5.7
	8.66.0.
	8.66.1. Installation of Libpipeline
	8.66.2. Contents of Libpipeline

	8.67. Make-4.4.1
	8.67.0.
	8.67.1. Installation of Make
	8.67.2. Contents of Make

	8.68. Patch-2.7.6
	8.68.0.
	8.68.1. Installation of Patch
	8.68.2. Contents of Patch

	8.69. Tar-1.35
	8.69.0.
	8.69.1. Installation of Tar
	8.69.2. Contents of Tar

	8.70. Texinfo-7.0.3
	8.70.0.
	8.70.1. Installation of Texinfo
	8.70.2. Contents of Texinfo

	8.71. Vim-9.0.1677
	8.71.0.
	8.71.1. Installation of Vim
	8.71.2. Configuring Vim
	8.71.3. Contents of Vim

	8.72. MarkupSafe-2.1.3
	8.72.0.
	8.72.1. Installation of MarkupSafe
	8.72.2. Contents of MarkupSafe

	8.73. Jinja2-3.1.2
	8.73.0.
	8.73.1. Installation of Jinja2
	8.73.2. Contents of Jinja2

	8.74. Systemd-254
	8.74.0.
	8.74.1. Installation of systemd
	8.74.2. Contents of systemd

	8.75. D-Bus-1.14.8
	8.75.0.
	8.75.1. Installation of D-Bus
	8.75.2. Contents of D-Bus

	8.76. Man-DB-2.11.2
	8.76.0.
	8.76.1. Installation of Man-DB
	8.76.2. Non-English Manual Pages in LFS
	8.76.3. Contents of Man-DB

	8.77. Procps-ng-4.0.3
	8.77.0.
	8.77.1. Installation of Procps-ng
	8.77.2. Contents of Procps-ng

	8.78. Util-linux-2.39.1
	8.78.0.
	8.78.1. Installation of Util-linux
	8.78.2. Contents of Util-linux

	8.79. E2fsprogs-1.47.0
	8.79.0.
	8.79.1. Installation of E2fsprogs
	8.79.2. Configuring E2fsprogs
	8.79.3. Contents of E2fsprogs

	8.80. About Debugging Symbols
	8.81. Stripping
	8.82. Cleaning Up

	Chapter 9. System Configuration
	9.1. Introduction
	9.2. General Network Configuration
	9.2.1. Network Interface Configuration Files
	9.2.1.1. Network Device Naming
	9.2.1.2. Static IP Configuration
	9.2.1.3. DHCP Configuration

	9.2.2. Creating the /etc/resolv.conf File
	9.2.2.1. systemd-resolved Configuration
	9.2.2.2. Static resolv.conf Configuration

	9.2.3. Configuring the system hostname
	9.2.4. Customizing the /etc/hosts File

	9.3. Overview of Device and Module Handling
	9.3.1. History
	9.3.2. Udev Implementation
	9.3.2.1. Sysfs
	9.3.2.2. Device Node Creation
	9.3.2.3. Module Loading
	9.3.2.4. Handling Hotpluggable/Dynamic Devices

	9.3.3. Problems with Loading Modules and Creating Devices
	9.3.3.1. A Kernel Module Is Not Loaded Automatically
	9.3.3.2. A Kernel Module Is Not Loaded Automatically, and Udev Is Not Intended to Load It
	9.3.3.3. Udev Loads Some Unwanted Module
	9.3.3.4. Udev Creates a Device Incorrectly, or Makes the Wrong Symlink
	9.3.3.5. Udev Rule Works Unreliably
	9.3.3.6. Udev Does Not Create a Device
	9.3.3.7. Device Naming Order Changes Randomly After Rebooting

	9.3.4. Useful Reading

	9.4. Managing Devices
	9.4.1. Dealing with Duplicate Devices

	9.5. Configuring the system clock
	9.5.1. Network Time Synchronization

	9.6. Configuring the Linux Console
	9.7. Configuring the System Locale
	9.8. Creating the /etc/inputrc File
	9.9. Creating the /etc/shells File
	9.10. Systemd Usage and Configuration
	9.10.1. Basic Configuration
	9.10.2. Disabling Screen Clearing at Boot Time
	9.10.3. Disabling tmpfs for /tmp
	9.10.4. Configuring Automatic File Creation and Deletion
	9.10.5. Overriding Default Services Behavior
	9.10.6. Debugging the Boot Sequence
	9.10.7. Working with the Systemd Journal
	9.10.8. Working with Core Dumps
	9.10.9. Long Running Processes

	Chapter 10. Making the LFS System Bootable
	10.1. Introduction
	10.2. Creating the /etc/fstab File
	10.3. Linux-6.4.12
	10.3.0.
	10.3.1. Installation of the kernel
	10.3.2. Configuring Linux Module Load Order
	10.3.3. Contents of Linux

	10.4. Using GRUB to Set Up the Boot Process
	10.4.1. Introduction
	10.4.2. GRUB Naming Conventions
	10.4.3. Setting Up the Configuration
	10.4.4. Creating the GRUB Configuration File

	Chapter 11. The End
	11.1. The End
	11.2. Get Counted
	11.3. Rebooting the System
	11.4. Additional Resources
	11.5. Getting Started After LFS
	11.5.1. Deciding what to do next
	11.5.2. Working in a basic LFS environment
	11.5.2.1. Work from the LFS host in chroot
	11.5.2.2. Work remotely via ssh
	11.5.2.3. Work from the LFS command line

	Part V. Appendices
	Appendix A. Acronyms and Terms
	Appendix B. Acknowledgments
	Appendix C. Dependencies
	Appendix D. LFS Licenses
	D.1. Creative Commons License
	D.2. The MIT License

	Index

